This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate proof of indthinc assuming more axioms including ax-pow and ax-un . (Contributed by Zhi Wang, 17-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | indthinc.b | |- ( ph -> B = ( Base ` C ) ) |
|
| indthinc.h | |- ( ph -> ( ( B X. B ) X. { 1o } ) = ( Hom ` C ) ) |
||
| indthinc.o | |- ( ph -> (/) = ( comp ` C ) ) |
||
| indthinc.c | |- ( ph -> C e. V ) |
||
| Assertion | indthincALT | |- ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> (/) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indthinc.b | |- ( ph -> B = ( Base ` C ) ) |
|
| 2 | indthinc.h | |- ( ph -> ( ( B X. B ) X. { 1o } ) = ( Hom ` C ) ) |
|
| 3 | indthinc.o | |- ( ph -> (/) = ( comp ` C ) ) |
|
| 4 | indthinc.c | |- ( ph -> C e. V ) |
|
| 5 | 1oex | |- 1o e. _V |
|
| 6 | 5 | ovconst2 | |- ( ( x e. B /\ y e. B ) -> ( x ( ( B X. B ) X. { 1o } ) y ) = 1o ) |
| 7 | domrefg | |- ( 1o e. _V -> 1o ~<_ 1o ) |
|
| 8 | 5 7 | ax-mp | |- 1o ~<_ 1o |
| 9 | 6 8 | eqbrtrdi | |- ( ( x e. B /\ y e. B ) -> ( x ( ( B X. B ) X. { 1o } ) y ) ~<_ 1o ) |
| 10 | modom2 | |- ( E* f f e. ( x ( ( B X. B ) X. { 1o } ) y ) <-> ( x ( ( B X. B ) X. { 1o } ) y ) ~<_ 1o ) |
|
| 11 | 9 10 | sylibr | |- ( ( x e. B /\ y e. B ) -> E* f f e. ( x ( ( B X. B ) X. { 1o } ) y ) ) |
| 12 | 11 | adantl | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> E* f f e. ( x ( ( B X. B ) X. { 1o } ) y ) ) |
| 13 | biid | |- ( ( ( x e. B /\ y e. B /\ z e. B ) /\ ( f e. ( x ( ( B X. B ) X. { 1o } ) y ) /\ g e. ( y ( ( B X. B ) X. { 1o } ) z ) ) ) <-> ( ( x e. B /\ y e. B /\ z e. B ) /\ ( f e. ( x ( ( B X. B ) X. { 1o } ) y ) /\ g e. ( y ( ( B X. B ) X. { 1o } ) z ) ) ) ) |
|
| 14 | id | |- ( y e. B -> y e. B ) |
|
| 15 | 14 | ancli | |- ( y e. B -> ( y e. B /\ y e. B ) ) |
| 16 | 5 | ovconst2 | |- ( ( y e. B /\ y e. B ) -> ( y ( ( B X. B ) X. { 1o } ) y ) = 1o ) |
| 17 | 0lt1o | |- (/) e. 1o |
|
| 18 | eleq2 | |- ( ( y ( ( B X. B ) X. { 1o } ) y ) = 1o -> ( (/) e. ( y ( ( B X. B ) X. { 1o } ) y ) <-> (/) e. 1o ) ) |
|
| 19 | 17 18 | mpbiri | |- ( ( y ( ( B X. B ) X. { 1o } ) y ) = 1o -> (/) e. ( y ( ( B X. B ) X. { 1o } ) y ) ) |
| 20 | 15 16 19 | 3syl | |- ( y e. B -> (/) e. ( y ( ( B X. B ) X. { 1o } ) y ) ) |
| 21 | 20 | adantl | |- ( ( ph /\ y e. B ) -> (/) e. ( y ( ( B X. B ) X. { 1o } ) y ) ) |
| 22 | 17 | a1i | |- ( ( x e. B /\ y e. B /\ z e. B ) -> (/) e. 1o ) |
| 23 | 0ov | |- ( <. x , y >. (/) z ) = (/) |
|
| 24 | 23 | oveqi | |- ( g ( <. x , y >. (/) z ) f ) = ( g (/) f ) |
| 25 | 0ov | |- ( g (/) f ) = (/) |
|
| 26 | 24 25 | eqtri | |- ( g ( <. x , y >. (/) z ) f ) = (/) |
| 27 | 26 | a1i | |- ( ( x e. B /\ y e. B /\ z e. B ) -> ( g ( <. x , y >. (/) z ) f ) = (/) ) |
| 28 | 5 | ovconst2 | |- ( ( x e. B /\ z e. B ) -> ( x ( ( B X. B ) X. { 1o } ) z ) = 1o ) |
| 29 | 28 | 3adant2 | |- ( ( x e. B /\ y e. B /\ z e. B ) -> ( x ( ( B X. B ) X. { 1o } ) z ) = 1o ) |
| 30 | 22 27 29 | 3eltr4d | |- ( ( x e. B /\ y e. B /\ z e. B ) -> ( g ( <. x , y >. (/) z ) f ) e. ( x ( ( B X. B ) X. { 1o } ) z ) ) |
| 31 | 30 | ad2antrl | |- ( ( ph /\ ( ( x e. B /\ y e. B /\ z e. B ) /\ ( f e. ( x ( ( B X. B ) X. { 1o } ) y ) /\ g e. ( y ( ( B X. B ) X. { 1o } ) z ) ) ) ) -> ( g ( <. x , y >. (/) z ) f ) e. ( x ( ( B X. B ) X. { 1o } ) z ) ) |
| 32 | 1 2 12 3 4 13 21 31 | isthincd2 | |- ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> (/) ) ) ) |