This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An indiscrete category in which all hom-sets have exactly one morphism is a thin category. Constructed here is an indiscrete category where all morphisms are (/) . This is a special case of prsthinc , where .<_ = ( B X. B ) . This theorem also implies a functor from the category of sets to the category of small categories. (Contributed by Zhi Wang, 17-Sep-2024) (Proof shortened by Zhi Wang, 19-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | indthinc.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | |
| indthinc.h | ⊢ ( 𝜑 → ( ( 𝐵 × 𝐵 ) × { 1o } ) = ( Hom ‘ 𝐶 ) ) | ||
| indthinc.o | ⊢ ( 𝜑 → ∅ = ( comp ‘ 𝐶 ) ) | ||
| indthinc.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| Assertion | indthinc | ⊢ ( 𝜑 → ( 𝐶 ∈ ThinCat ∧ ( Id ‘ 𝐶 ) = ( 𝑦 ∈ 𝐵 ↦ ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indthinc.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | |
| 2 | indthinc.h | ⊢ ( 𝜑 → ( ( 𝐵 × 𝐵 ) × { 1o } ) = ( Hom ‘ 𝐶 ) ) | |
| 3 | indthinc.o | ⊢ ( 𝜑 → ∅ = ( comp ‘ 𝐶 ) ) | |
| 4 | indthinc.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 5 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐵 × 𝐵 ) × { 1o } ) = ( ( 𝐵 × 𝐵 ) × { 1o } ) ) | |
| 6 | 5 | f1omo | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∃* 𝑓 𝑓 ∈ ( ( ( 𝐵 × 𝐵 ) × { 1o } ) ‘ 〈 𝑥 , 𝑦 〉 ) ) |
| 7 | df-ov | ⊢ ( 𝑥 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) = ( ( ( 𝐵 × 𝐵 ) × { 1o } ) ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 8 | 7 | eleq2i | ⊢ ( 𝑓 ∈ ( 𝑥 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) ↔ 𝑓 ∈ ( ( ( 𝐵 × 𝐵 ) × { 1o } ) ‘ 〈 𝑥 , 𝑦 〉 ) ) |
| 9 | 8 | mobii | ⊢ ( ∃* 𝑓 𝑓 ∈ ( 𝑥 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) ↔ ∃* 𝑓 𝑓 ∈ ( ( ( 𝐵 × 𝐵 ) × { 1o } ) ‘ 〈 𝑥 , 𝑦 〉 ) ) |
| 10 | 6 9 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∃* 𝑓 𝑓 ∈ ( 𝑥 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) ) |
| 11 | biid | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑧 ) ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑧 ) ) ) ) | |
| 12 | id | ⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐵 ) | |
| 13 | 12 | ancli | ⊢ ( 𝑦 ∈ 𝐵 → ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 14 | 1oex | ⊢ 1o ∈ V | |
| 15 | 14 | ovconst2 | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) = 1o ) |
| 16 | 0lt1o | ⊢ ∅ ∈ 1o | |
| 17 | eleq2 | ⊢ ( ( 𝑦 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) = 1o → ( ∅ ∈ ( 𝑦 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) ↔ ∅ ∈ 1o ) ) | |
| 18 | 16 17 | mpbiri | ⊢ ( ( 𝑦 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) = 1o → ∅ ∈ ( 𝑦 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) ) |
| 19 | 13 15 18 | 3syl | ⊢ ( 𝑦 ∈ 𝐵 → ∅ ∈ ( 𝑦 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) ) |
| 20 | 19 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ∅ ∈ ( 𝑦 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) ) |
| 21 | 16 | a1i | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ∅ ∈ 1o ) |
| 22 | 0ov | ⊢ ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) = ∅ | |
| 23 | 22 | oveqi | ⊢ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) 𝑓 ) = ( 𝑔 ∅ 𝑓 ) |
| 24 | 0ov | ⊢ ( 𝑔 ∅ 𝑓 ) = ∅ | |
| 25 | 23 24 | eqtri | ⊢ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) 𝑓 ) = ∅ |
| 26 | 25 | a1i | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) 𝑓 ) = ∅ ) |
| 27 | 14 | ovconst2 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑥 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑧 ) = 1o ) |
| 28 | 27 | 3adant2 | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑥 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑧 ) = 1o ) |
| 29 | 21 26 28 | 3eltr4d | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑧 ) ) |
| 30 | 29 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑧 ) ) |
| 31 | 1 2 10 3 4 11 20 30 | isthincd2 | ⊢ ( 𝜑 → ( 𝐶 ∈ ThinCat ∧ ( Id ‘ 𝐶 ) = ( 𝑦 ∈ 𝐵 ↦ ∅ ) ) ) |