This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An indiscrete category in which all hom-sets have exactly one morphism is a thin category. Constructed here is an indiscrete category where all morphisms are (/) . This is a special case of prsthinc , where .<_ = ( B X. B ) . This theorem also implies a functor from the category of sets to the category of small categories. (Contributed by Zhi Wang, 17-Sep-2024) (Proof shortened by Zhi Wang, 19-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | indthinc.b | ||
| indthinc.h | |||
| indthinc.o | |||
| indthinc.c | |||
| Assertion | indthinc |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indthinc.b | ||
| 2 | indthinc.h | ||
| 3 | indthinc.o | ||
| 4 | indthinc.c | ||
| 5 | eqidd | ||
| 6 | 5 | f1omo | |
| 7 | df-ov | ||
| 8 | 7 | eleq2i | |
| 9 | 8 | mobii | |
| 10 | 6 9 | sylibr | |
| 11 | biid | ||
| 12 | id | ||
| 13 | 12 | ancli | |
| 14 | 1oex | ||
| 15 | 14 | ovconst2 | |
| 16 | 0lt1o | ||
| 17 | eleq2 | ||
| 18 | 16 17 | mpbiri | |
| 19 | 13 15 18 | 3syl | |
| 20 | 19 | adantl | |
| 21 | 16 | a1i | |
| 22 | 0ov | ||
| 23 | 22 | oveqi | |
| 24 | 0ov | ||
| 25 | 23 24 | eqtri | |
| 26 | 25 | a1i | |
| 27 | 14 | ovconst2 | |
| 28 | 27 | 3adant2 | |
| 29 | 21 26 28 | 3eltr4d | |
| 30 | 29 | ad2antrl | |
| 31 | 1 2 10 3 4 11 20 30 | isthincd2 |