This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of ralima as of 14-Aug-2025. Duplicate version of ralima . (Contributed by Scott Fenton, 27-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | imaeqsexvOLD.1 | |- ( x = ( F ` y ) -> ( ph <-> ps ) ) |
|
| Assertion | imaeqsalvOLD | |- ( ( F Fn A /\ B C_ A ) -> ( A. x e. ( F " B ) ph <-> A. y e. B ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeqsexvOLD.1 | |- ( x = ( F ` y ) -> ( ph <-> ps ) ) |
|
| 2 | 1 | notbid | |- ( x = ( F ` y ) -> ( -. ph <-> -. ps ) ) |
| 3 | 2 | imaeqsexvOLD | |- ( ( F Fn A /\ B C_ A ) -> ( E. x e. ( F " B ) -. ph <-> E. y e. B -. ps ) ) |
| 4 | 3 | notbid | |- ( ( F Fn A /\ B C_ A ) -> ( -. E. x e. ( F " B ) -. ph <-> -. E. y e. B -. ps ) ) |
| 5 | dfral2 | |- ( A. x e. ( F " B ) ph <-> -. E. x e. ( F " B ) -. ph ) |
|
| 6 | dfral2 | |- ( A. y e. B ps <-> -. E. y e. B -. ps ) |
|
| 7 | 4 5 6 | 3bitr4g | |- ( ( F Fn A /\ B C_ A ) -> ( A. x e. ( F " B ) ph <-> A. y e. B ps ) ) |