This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication is a continuous function on the unit interval. (Contributed by Mario Carneiro, 8-Jun-2014) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iimulcn | |- ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn II ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 2 | 1 | dfii3 | |- II = ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) |
| 3 | 1 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 4 | 3 | a1i | |- ( T. -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 5 | unitsscn | |- ( 0 [,] 1 ) C_ CC |
|
| 6 | 5 | a1i | |- ( T. -> ( 0 [,] 1 ) C_ CC ) |
| 7 | 1 | mpomulcn | |- ( x e. CC , y e. CC |-> ( x x. y ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 8 | 7 | a1i | |- ( T. -> ( x e. CC , y e. CC |-> ( x x. y ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 9 | 2 4 6 2 4 6 8 | cnmpt2res | |- ( T. -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) ) |
| 10 | 9 | mptru | |- ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) |
| 11 | iimulcl | |- ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) -> ( x x. y ) e. ( 0 [,] 1 ) ) |
|
| 12 | 11 | rgen2 | |- A. x e. ( 0 [,] 1 ) A. y e. ( 0 [,] 1 ) ( x x. y ) e. ( 0 [,] 1 ) |
| 13 | eqid | |- ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) |
|
| 14 | 13 | fmpo | |- ( A. x e. ( 0 [,] 1 ) A. y e. ( 0 [,] 1 ) ( x x. y ) e. ( 0 [,] 1 ) <-> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> ( 0 [,] 1 ) ) |
| 15 | frn | |- ( ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> ( 0 [,] 1 ) -> ran ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) C_ ( 0 [,] 1 ) ) |
|
| 16 | 14 15 | sylbi | |- ( A. x e. ( 0 [,] 1 ) A. y e. ( 0 [,] 1 ) ( x x. y ) e. ( 0 [,] 1 ) -> ran ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) C_ ( 0 [,] 1 ) ) |
| 17 | 12 16 | ax-mp | |- ran ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) C_ ( 0 [,] 1 ) |
| 18 | cnrest2 | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ CC ) -> ( ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) <-> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) ) ) |
|
| 19 | 3 17 5 18 | mp3an | |- ( ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) <-> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) ) |
| 20 | 10 19 | mpbi | |- ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) |
| 21 | 2 | oveq2i | |- ( ( II tX II ) Cn II ) = ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) |
| 22 | 20 21 | eleqtrri | |- ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x x. y ) ) e. ( ( II tX II ) Cn II ) |