This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Map the first half of II into II . (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iihalf1 | |- ( X e. ( 0 [,] ( 1 / 2 ) ) -> ( 2 x. X ) e. ( 0 [,] 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re | |- 2 e. RR |
|
| 2 | remulcl | |- ( ( 2 e. RR /\ X e. RR ) -> ( 2 x. X ) e. RR ) |
|
| 3 | 1 2 | mpan | |- ( X e. RR -> ( 2 x. X ) e. RR ) |
| 4 | 3 | 3ad2ant1 | |- ( ( X e. RR /\ 0 <_ X /\ X <_ ( 1 / 2 ) ) -> ( 2 x. X ) e. RR ) |
| 5 | 0le2 | |- 0 <_ 2 |
|
| 6 | mulge0 | |- ( ( ( 2 e. RR /\ 0 <_ 2 ) /\ ( X e. RR /\ 0 <_ X ) ) -> 0 <_ ( 2 x. X ) ) |
|
| 7 | 1 5 6 | mpanl12 | |- ( ( X e. RR /\ 0 <_ X ) -> 0 <_ ( 2 x. X ) ) |
| 8 | 7 | 3adant3 | |- ( ( X e. RR /\ 0 <_ X /\ X <_ ( 1 / 2 ) ) -> 0 <_ ( 2 x. X ) ) |
| 9 | 1re | |- 1 e. RR |
|
| 10 | 2pos | |- 0 < 2 |
|
| 11 | 1 10 | pm3.2i | |- ( 2 e. RR /\ 0 < 2 ) |
| 12 | lemuldiv2 | |- ( ( X e. RR /\ 1 e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. X ) <_ 1 <-> X <_ ( 1 / 2 ) ) ) |
|
| 13 | 9 11 12 | mp3an23 | |- ( X e. RR -> ( ( 2 x. X ) <_ 1 <-> X <_ ( 1 / 2 ) ) ) |
| 14 | 13 | biimpar | |- ( ( X e. RR /\ X <_ ( 1 / 2 ) ) -> ( 2 x. X ) <_ 1 ) |
| 15 | 14 | 3adant2 | |- ( ( X e. RR /\ 0 <_ X /\ X <_ ( 1 / 2 ) ) -> ( 2 x. X ) <_ 1 ) |
| 16 | 4 8 15 | 3jca | |- ( ( X e. RR /\ 0 <_ X /\ X <_ ( 1 / 2 ) ) -> ( ( 2 x. X ) e. RR /\ 0 <_ ( 2 x. X ) /\ ( 2 x. X ) <_ 1 ) ) |
| 17 | 0re | |- 0 e. RR |
|
| 18 | halfre | |- ( 1 / 2 ) e. RR |
|
| 19 | 17 18 | elicc2i | |- ( X e. ( 0 [,] ( 1 / 2 ) ) <-> ( X e. RR /\ 0 <_ X /\ X <_ ( 1 / 2 ) ) ) |
| 20 | 17 9 | elicc2i | |- ( ( 2 x. X ) e. ( 0 [,] 1 ) <-> ( ( 2 x. X ) e. RR /\ 0 <_ ( 2 x. X ) /\ ( 2 x. X ) <_ 1 ) ) |
| 21 | 16 19 20 | 3imtr4i | |- ( X e. ( 0 [,] ( 1 / 2 ) ) -> ( 2 x. X ) e. ( 0 [,] 1 ) ) |