This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Map the first half of II into II . (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iihalf1 | ⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) → ( 2 · 𝑋 ) ∈ ( 0 [,] 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re | ⊢ 2 ∈ ℝ | |
| 2 | remulcl | ⊢ ( ( 2 ∈ ℝ ∧ 𝑋 ∈ ℝ ) → ( 2 · 𝑋 ) ∈ ℝ ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝑋 ∈ ℝ → ( 2 · 𝑋 ) ∈ ℝ ) |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ ( 1 / 2 ) ) → ( 2 · 𝑋 ) ∈ ℝ ) |
| 5 | 0le2 | ⊢ 0 ≤ 2 | |
| 6 | mulge0 | ⊢ ( ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) ∧ ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ) → 0 ≤ ( 2 · 𝑋 ) ) | |
| 7 | 1 5 6 | mpanl12 | ⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) → 0 ≤ ( 2 · 𝑋 ) ) |
| 8 | 7 | 3adant3 | ⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ ( 1 / 2 ) ) → 0 ≤ ( 2 · 𝑋 ) ) |
| 9 | 1re | ⊢ 1 ∈ ℝ | |
| 10 | 2pos | ⊢ 0 < 2 | |
| 11 | 1 10 | pm3.2i | ⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 12 | lemuldiv2 | ⊢ ( ( 𝑋 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 2 · 𝑋 ) ≤ 1 ↔ 𝑋 ≤ ( 1 / 2 ) ) ) | |
| 13 | 9 11 12 | mp3an23 | ⊢ ( 𝑋 ∈ ℝ → ( ( 2 · 𝑋 ) ≤ 1 ↔ 𝑋 ≤ ( 1 / 2 ) ) ) |
| 14 | 13 | biimpar | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑋 ≤ ( 1 / 2 ) ) → ( 2 · 𝑋 ) ≤ 1 ) |
| 15 | 14 | 3adant2 | ⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ ( 1 / 2 ) ) → ( 2 · 𝑋 ) ≤ 1 ) |
| 16 | 4 8 15 | 3jca | ⊢ ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ ( 1 / 2 ) ) → ( ( 2 · 𝑋 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝑋 ) ∧ ( 2 · 𝑋 ) ≤ 1 ) ) |
| 17 | 0re | ⊢ 0 ∈ ℝ | |
| 18 | halfre | ⊢ ( 1 / 2 ) ∈ ℝ | |
| 19 | 17 18 | elicc2i | ⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) ↔ ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ ( 1 / 2 ) ) ) |
| 20 | 17 9 | elicc2i | ⊢ ( ( 2 · 𝑋 ) ∈ ( 0 [,] 1 ) ↔ ( ( 2 · 𝑋 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝑋 ) ∧ ( 2 · 𝑋 ) ≤ 1 ) ) |
| 21 | 16 19 20 | 3imtr4i | ⊢ ( 𝑋 ∈ ( 0 [,] ( 1 / 2 ) ) → ( 2 · 𝑋 ) ∈ ( 0 [,] 1 ) ) |