This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction form of i1fposd . (Contributed by Mario Carneiro, 6-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | i1fposd.1 | |- ( ph -> ( x e. RR |-> A ) e. dom S.1 ) |
|
| Assertion | i1fposd | |- ( ph -> ( x e. RR |-> if ( 0 <_ A , A , 0 ) ) e. dom S.1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fposd.1 | |- ( ph -> ( x e. RR |-> A ) e. dom S.1 ) |
|
| 2 | nfcv | |- F/_ x 0 |
|
| 3 | nfcv | |- F/_ x <_ |
|
| 4 | nffvmpt1 | |- F/_ x ( ( x e. RR |-> A ) ` y ) |
|
| 5 | 2 3 4 | nfbr | |- F/ x 0 <_ ( ( x e. RR |-> A ) ` y ) |
| 6 | 5 4 2 | nfif | |- F/_ x if ( 0 <_ ( ( x e. RR |-> A ) ` y ) , ( ( x e. RR |-> A ) ` y ) , 0 ) |
| 7 | nfcv | |- F/_ y if ( 0 <_ ( ( x e. RR |-> A ) ` x ) , ( ( x e. RR |-> A ) ` x ) , 0 ) |
|
| 8 | fveq2 | |- ( y = x -> ( ( x e. RR |-> A ) ` y ) = ( ( x e. RR |-> A ) ` x ) ) |
|
| 9 | 8 | breq2d | |- ( y = x -> ( 0 <_ ( ( x e. RR |-> A ) ` y ) <-> 0 <_ ( ( x e. RR |-> A ) ` x ) ) ) |
| 10 | 9 8 | ifbieq1d | |- ( y = x -> if ( 0 <_ ( ( x e. RR |-> A ) ` y ) , ( ( x e. RR |-> A ) ` y ) , 0 ) = if ( 0 <_ ( ( x e. RR |-> A ) ` x ) , ( ( x e. RR |-> A ) ` x ) , 0 ) ) |
| 11 | 6 7 10 | cbvmpt | |- ( y e. RR |-> if ( 0 <_ ( ( x e. RR |-> A ) ` y ) , ( ( x e. RR |-> A ) ` y ) , 0 ) ) = ( x e. RR |-> if ( 0 <_ ( ( x e. RR |-> A ) ` x ) , ( ( x e. RR |-> A ) ` x ) , 0 ) ) |
| 12 | simpr | |- ( ( ph /\ x e. RR ) -> x e. RR ) |
|
| 13 | i1ff | |- ( ( x e. RR |-> A ) e. dom S.1 -> ( x e. RR |-> A ) : RR --> RR ) |
|
| 14 | 1 13 | syl | |- ( ph -> ( x e. RR |-> A ) : RR --> RR ) |
| 15 | 14 | fvmptelcdm | |- ( ( ph /\ x e. RR ) -> A e. RR ) |
| 16 | eqid | |- ( x e. RR |-> A ) = ( x e. RR |-> A ) |
|
| 17 | 16 | fvmpt2 | |- ( ( x e. RR /\ A e. RR ) -> ( ( x e. RR |-> A ) ` x ) = A ) |
| 18 | 12 15 17 | syl2anc | |- ( ( ph /\ x e. RR ) -> ( ( x e. RR |-> A ) ` x ) = A ) |
| 19 | 18 | breq2d | |- ( ( ph /\ x e. RR ) -> ( 0 <_ ( ( x e. RR |-> A ) ` x ) <-> 0 <_ A ) ) |
| 20 | 19 18 | ifbieq1d | |- ( ( ph /\ x e. RR ) -> if ( 0 <_ ( ( x e. RR |-> A ) ` x ) , ( ( x e. RR |-> A ) ` x ) , 0 ) = if ( 0 <_ A , A , 0 ) ) |
| 21 | 20 | mpteq2dva | |- ( ph -> ( x e. RR |-> if ( 0 <_ ( ( x e. RR |-> A ) ` x ) , ( ( x e. RR |-> A ) ` x ) , 0 ) ) = ( x e. RR |-> if ( 0 <_ A , A , 0 ) ) ) |
| 22 | 11 21 | eqtrid | |- ( ph -> ( y e. RR |-> if ( 0 <_ ( ( x e. RR |-> A ) ` y ) , ( ( x e. RR |-> A ) ` y ) , 0 ) ) = ( x e. RR |-> if ( 0 <_ A , A , 0 ) ) ) |
| 23 | eqid | |- ( y e. RR |-> if ( 0 <_ ( ( x e. RR |-> A ) ` y ) , ( ( x e. RR |-> A ) ` y ) , 0 ) ) = ( y e. RR |-> if ( 0 <_ ( ( x e. RR |-> A ) ` y ) , ( ( x e. RR |-> A ) ` y ) , 0 ) ) |
|
| 24 | 23 | i1fpos | |- ( ( x e. RR |-> A ) e. dom S.1 -> ( y e. RR |-> if ( 0 <_ ( ( x e. RR |-> A ) ` y ) , ( ( x e. RR |-> A ) ` y ) , 0 ) ) e. dom S.1 ) |
| 25 | 1 24 | syl | |- ( ph -> ( y e. RR |-> if ( 0 <_ ( ( x e. RR |-> A ) ` y ) , ( ( x e. RR |-> A ) ` y ) , 0 ) ) e. dom S.1 ) |
| 26 | 22 25 | eqeltrrd | |- ( ph -> ( x e. RR |-> if ( 0 <_ A , A , 0 ) ) e. dom S.1 ) |