This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two times a vector. (Contributed by NM, 22-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hv2times | |- ( A e. ~H -> ( 2 .h A ) = ( A +h A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 2 | 1 | oveq1i | |- ( 2 .h A ) = ( ( 1 + 1 ) .h A ) |
| 3 | ax-1cn | |- 1 e. CC |
|
| 4 | ax-hvdistr2 | |- ( ( 1 e. CC /\ 1 e. CC /\ A e. ~H ) -> ( ( 1 + 1 ) .h A ) = ( ( 1 .h A ) +h ( 1 .h A ) ) ) |
|
| 5 | 3 3 4 | mp3an12 | |- ( A e. ~H -> ( ( 1 + 1 ) .h A ) = ( ( 1 .h A ) +h ( 1 .h A ) ) ) |
| 6 | 2 5 | eqtrid | |- ( A e. ~H -> ( 2 .h A ) = ( ( 1 .h A ) +h ( 1 .h A ) ) ) |
| 7 | ax-hvdistr1 | |- ( ( 1 e. CC /\ A e. ~H /\ A e. ~H ) -> ( 1 .h ( A +h A ) ) = ( ( 1 .h A ) +h ( 1 .h A ) ) ) |
|
| 8 | 3 7 | mp3an1 | |- ( ( A e. ~H /\ A e. ~H ) -> ( 1 .h ( A +h A ) ) = ( ( 1 .h A ) +h ( 1 .h A ) ) ) |
| 9 | 8 | anidms | |- ( A e. ~H -> ( 1 .h ( A +h A ) ) = ( ( 1 .h A ) +h ( 1 .h A ) ) ) |
| 10 | hvaddcl | |- ( ( A e. ~H /\ A e. ~H ) -> ( A +h A ) e. ~H ) |
|
| 11 | 10 | anidms | |- ( A e. ~H -> ( A +h A ) e. ~H ) |
| 12 | ax-hvmulid | |- ( ( A +h A ) e. ~H -> ( 1 .h ( A +h A ) ) = ( A +h A ) ) |
|
| 13 | 11 12 | syl | |- ( A e. ~H -> ( 1 .h ( A +h A ) ) = ( A +h A ) ) |
| 14 | 6 9 13 | 3eqtr2d | |- ( A e. ~H -> ( 2 .h A ) = ( A +h A ) ) |