This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak deduction theorem eliminating four hypotheses. See comments in dedth2h . (Contributed by NM, 16-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dedth4h.1 | |- ( A = if ( ph , A , R ) -> ( ta <-> et ) ) |
|
| dedth4h.2 | |- ( B = if ( ps , B , S ) -> ( et <-> ze ) ) |
||
| dedth4h.3 | |- ( C = if ( ch , C , F ) -> ( ze <-> si ) ) |
||
| dedth4h.4 | |- ( D = if ( th , D , G ) -> ( si <-> rh ) ) |
||
| dedth4h.5 | |- rh |
||
| Assertion | dedth4h | |- ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedth4h.1 | |- ( A = if ( ph , A , R ) -> ( ta <-> et ) ) |
|
| 2 | dedth4h.2 | |- ( B = if ( ps , B , S ) -> ( et <-> ze ) ) |
|
| 3 | dedth4h.3 | |- ( C = if ( ch , C , F ) -> ( ze <-> si ) ) |
|
| 4 | dedth4h.4 | |- ( D = if ( th , D , G ) -> ( si <-> rh ) ) |
|
| 5 | dedth4h.5 | |- rh |
|
| 6 | 1 | imbi2d | |- ( A = if ( ph , A , R ) -> ( ( ( ch /\ th ) -> ta ) <-> ( ( ch /\ th ) -> et ) ) ) |
| 7 | 2 | imbi2d | |- ( B = if ( ps , B , S ) -> ( ( ( ch /\ th ) -> et ) <-> ( ( ch /\ th ) -> ze ) ) ) |
| 8 | 3 4 5 | dedth2h | |- ( ( ch /\ th ) -> ze ) |
| 9 | 6 7 8 | dedth2h | |- ( ( ph /\ ps ) -> ( ( ch /\ th ) -> ta ) ) |
| 10 | 9 | imp | |- ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) -> ta ) |