This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvsubcan2 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A -h C ) = ( B -h C ) <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvsubcl | |- ( ( C e. ~H /\ A e. ~H ) -> ( C -h A ) e. ~H ) |
|
| 2 | 1 | 3adant3 | |- ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( C -h A ) e. ~H ) |
| 3 | hvsubcl | |- ( ( C e. ~H /\ B e. ~H ) -> ( C -h B ) e. ~H ) |
|
| 4 | 3 | 3adant2 | |- ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( C -h B ) e. ~H ) |
| 5 | neg1cn | |- -u 1 e. CC |
|
| 6 | neg1ne0 | |- -u 1 =/= 0 |
|
| 7 | 5 6 | pm3.2i | |- ( -u 1 e. CC /\ -u 1 =/= 0 ) |
| 8 | hvmulcan | |- ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( C -h A ) e. ~H /\ ( C -h B ) e. ~H ) -> ( ( -u 1 .h ( C -h A ) ) = ( -u 1 .h ( C -h B ) ) <-> ( C -h A ) = ( C -h B ) ) ) |
|
| 9 | 7 8 | mp3an1 | |- ( ( ( C -h A ) e. ~H /\ ( C -h B ) e. ~H ) -> ( ( -u 1 .h ( C -h A ) ) = ( -u 1 .h ( C -h B ) ) <-> ( C -h A ) = ( C -h B ) ) ) |
| 10 | 2 4 9 | syl2anc | |- ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( ( -u 1 .h ( C -h A ) ) = ( -u 1 .h ( C -h B ) ) <-> ( C -h A ) = ( C -h B ) ) ) |
| 11 | hvnegdi | |- ( ( C e. ~H /\ A e. ~H ) -> ( -u 1 .h ( C -h A ) ) = ( A -h C ) ) |
|
| 12 | 11 | 3adant3 | |- ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( -u 1 .h ( C -h A ) ) = ( A -h C ) ) |
| 13 | hvnegdi | |- ( ( C e. ~H /\ B e. ~H ) -> ( -u 1 .h ( C -h B ) ) = ( B -h C ) ) |
|
| 14 | 13 | 3adant2 | |- ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( -u 1 .h ( C -h B ) ) = ( B -h C ) ) |
| 15 | 12 14 | eqeq12d | |- ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( ( -u 1 .h ( C -h A ) ) = ( -u 1 .h ( C -h B ) ) <-> ( A -h C ) = ( B -h C ) ) ) |
| 16 | hvsubcan | |- ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( ( C -h A ) = ( C -h B ) <-> A = B ) ) |
|
| 17 | 10 15 16 | 3bitr3d | |- ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( ( A -h C ) = ( B -h C ) <-> A = B ) ) |
| 18 | 17 | 3coml | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A -h C ) = ( B -h C ) <-> A = B ) ) |