This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert vector space addition/subtraction law. (Contributed by NM, 17-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvsub4 | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A +h B ) -h ( C +h D ) ) = ( ( A -h C ) +h ( B -h D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvaddcl | |- ( ( A e. ~H /\ B e. ~H ) -> ( A +h B ) e. ~H ) |
|
| 2 | hvaddcl | |- ( ( C e. ~H /\ D e. ~H ) -> ( C +h D ) e. ~H ) |
|
| 3 | hvsubval | |- ( ( ( A +h B ) e. ~H /\ ( C +h D ) e. ~H ) -> ( ( A +h B ) -h ( C +h D ) ) = ( ( A +h B ) +h ( -u 1 .h ( C +h D ) ) ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A +h B ) -h ( C +h D ) ) = ( ( A +h B ) +h ( -u 1 .h ( C +h D ) ) ) ) |
| 5 | hvsubval | |- ( ( A e. ~H /\ C e. ~H ) -> ( A -h C ) = ( A +h ( -u 1 .h C ) ) ) |
|
| 6 | 5 | ad2ant2r | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( A -h C ) = ( A +h ( -u 1 .h C ) ) ) |
| 7 | hvsubval | |- ( ( B e. ~H /\ D e. ~H ) -> ( B -h D ) = ( B +h ( -u 1 .h D ) ) ) |
|
| 8 | 7 | ad2ant2l | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( B -h D ) = ( B +h ( -u 1 .h D ) ) ) |
| 9 | 6 8 | oveq12d | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A -h C ) +h ( B -h D ) ) = ( ( A +h ( -u 1 .h C ) ) +h ( B +h ( -u 1 .h D ) ) ) ) |
| 10 | neg1cn | |- -u 1 e. CC |
|
| 11 | ax-hvdistr1 | |- ( ( -u 1 e. CC /\ C e. ~H /\ D e. ~H ) -> ( -u 1 .h ( C +h D ) ) = ( ( -u 1 .h C ) +h ( -u 1 .h D ) ) ) |
|
| 12 | 10 11 | mp3an1 | |- ( ( C e. ~H /\ D e. ~H ) -> ( -u 1 .h ( C +h D ) ) = ( ( -u 1 .h C ) +h ( -u 1 .h D ) ) ) |
| 13 | 12 | adantl | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( -u 1 .h ( C +h D ) ) = ( ( -u 1 .h C ) +h ( -u 1 .h D ) ) ) |
| 14 | 13 | oveq2d | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A +h B ) +h ( -u 1 .h ( C +h D ) ) ) = ( ( A +h B ) +h ( ( -u 1 .h C ) +h ( -u 1 .h D ) ) ) ) |
| 15 | hvmulcl | |- ( ( -u 1 e. CC /\ C e. ~H ) -> ( -u 1 .h C ) e. ~H ) |
|
| 16 | 10 15 | mpan | |- ( C e. ~H -> ( -u 1 .h C ) e. ~H ) |
| 17 | 16 | anim2i | |- ( ( A e. ~H /\ C e. ~H ) -> ( A e. ~H /\ ( -u 1 .h C ) e. ~H ) ) |
| 18 | hvmulcl | |- ( ( -u 1 e. CC /\ D e. ~H ) -> ( -u 1 .h D ) e. ~H ) |
|
| 19 | 10 18 | mpan | |- ( D e. ~H -> ( -u 1 .h D ) e. ~H ) |
| 20 | 19 | anim2i | |- ( ( B e. ~H /\ D e. ~H ) -> ( B e. ~H /\ ( -u 1 .h D ) e. ~H ) ) |
| 21 | 17 20 | anim12i | |- ( ( ( A e. ~H /\ C e. ~H ) /\ ( B e. ~H /\ D e. ~H ) ) -> ( ( A e. ~H /\ ( -u 1 .h C ) e. ~H ) /\ ( B e. ~H /\ ( -u 1 .h D ) e. ~H ) ) ) |
| 22 | 21 | an4s | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A e. ~H /\ ( -u 1 .h C ) e. ~H ) /\ ( B e. ~H /\ ( -u 1 .h D ) e. ~H ) ) ) |
| 23 | hvadd4 | |- ( ( ( A e. ~H /\ ( -u 1 .h C ) e. ~H ) /\ ( B e. ~H /\ ( -u 1 .h D ) e. ~H ) ) -> ( ( A +h ( -u 1 .h C ) ) +h ( B +h ( -u 1 .h D ) ) ) = ( ( A +h B ) +h ( ( -u 1 .h C ) +h ( -u 1 .h D ) ) ) ) |
|
| 24 | 22 23 | syl | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A +h ( -u 1 .h C ) ) +h ( B +h ( -u 1 .h D ) ) ) = ( ( A +h B ) +h ( ( -u 1 .h C ) +h ( -u 1 .h D ) ) ) ) |
| 25 | 14 24 | eqtr4d | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A +h B ) +h ( -u 1 .h ( C +h D ) ) ) = ( ( A +h ( -u 1 .h C ) ) +h ( B +h ( -u 1 .h D ) ) ) ) |
| 26 | 9 25 | eqtr4d | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A -h C ) +h ( B -h D ) ) = ( ( A +h B ) +h ( -u 1 .h ( C +h D ) ) ) ) |
| 27 | 4 26 | eqtr4d | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A +h B ) -h ( C +h D ) ) = ( ( A -h C ) +h ( B -h D ) ) ) |