This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar product associative law for Hilbert space operators. (Contributed by NM, 12-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | homulass | |- ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) -> ( ( A x. B ) .op T ) = ( A .op ( B .op T ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcl | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
|
| 2 | homval | |- ( ( ( A x. B ) e. CC /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( ( A x. B ) .op T ) ` x ) = ( ( A x. B ) .h ( T ` x ) ) ) |
|
| 3 | 1 2 | syl3an1 | |- ( ( ( A e. CC /\ B e. CC ) /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( ( A x. B ) .op T ) ` x ) = ( ( A x. B ) .h ( T ` x ) ) ) |
| 4 | 3 | 3expia | |- ( ( ( A e. CC /\ B e. CC ) /\ T : ~H --> ~H ) -> ( x e. ~H -> ( ( ( A x. B ) .op T ) ` x ) = ( ( A x. B ) .h ( T ` x ) ) ) ) |
| 5 | 4 | 3impa | |- ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) -> ( x e. ~H -> ( ( ( A x. B ) .op T ) ` x ) = ( ( A x. B ) .h ( T ` x ) ) ) ) |
| 6 | 5 | imp | |- ( ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A x. B ) .op T ) ` x ) = ( ( A x. B ) .h ( T ` x ) ) ) |
| 7 | homval | |- ( ( B e. CC /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( B .op T ) ` x ) = ( B .h ( T ` x ) ) ) |
|
| 8 | 7 | oveq2d | |- ( ( B e. CC /\ T : ~H --> ~H /\ x e. ~H ) -> ( A .h ( ( B .op T ) ` x ) ) = ( A .h ( B .h ( T ` x ) ) ) ) |
| 9 | 8 | 3expa | |- ( ( ( B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( A .h ( ( B .op T ) ` x ) ) = ( A .h ( B .h ( T ` x ) ) ) ) |
| 10 | 9 | 3adantl1 | |- ( ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( A .h ( ( B .op T ) ` x ) ) = ( A .h ( B .h ( T ` x ) ) ) ) |
| 11 | ffvelcdm | |- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( T ` x ) e. ~H ) |
|
| 12 | ax-hvmulass | |- ( ( A e. CC /\ B e. CC /\ ( T ` x ) e. ~H ) -> ( ( A x. B ) .h ( T ` x ) ) = ( A .h ( B .h ( T ` x ) ) ) ) |
|
| 13 | 11 12 | syl3an3 | |- ( ( A e. CC /\ B e. CC /\ ( T : ~H --> ~H /\ x e. ~H ) ) -> ( ( A x. B ) .h ( T ` x ) ) = ( A .h ( B .h ( T ` x ) ) ) ) |
| 14 | 13 | 3expa | |- ( ( ( A e. CC /\ B e. CC ) /\ ( T : ~H --> ~H /\ x e. ~H ) ) -> ( ( A x. B ) .h ( T ` x ) ) = ( A .h ( B .h ( T ` x ) ) ) ) |
| 15 | 14 | exp43 | |- ( A e. CC -> ( B e. CC -> ( T : ~H --> ~H -> ( x e. ~H -> ( ( A x. B ) .h ( T ` x ) ) = ( A .h ( B .h ( T ` x ) ) ) ) ) ) ) |
| 16 | 15 | 3imp1 | |- ( ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( A x. B ) .h ( T ` x ) ) = ( A .h ( B .h ( T ` x ) ) ) ) |
| 17 | 10 16 | eqtr4d | |- ( ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( A .h ( ( B .op T ) ` x ) ) = ( ( A x. B ) .h ( T ` x ) ) ) |
| 18 | 6 17 | eqtr4d | |- ( ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A x. B ) .op T ) ` x ) = ( A .h ( ( B .op T ) ` x ) ) ) |
| 19 | homulcl | |- ( ( B e. CC /\ T : ~H --> ~H ) -> ( B .op T ) : ~H --> ~H ) |
|
| 20 | homval | |- ( ( A e. CC /\ ( B .op T ) : ~H --> ~H /\ x e. ~H ) -> ( ( A .op ( B .op T ) ) ` x ) = ( A .h ( ( B .op T ) ` x ) ) ) |
|
| 21 | 19 20 | syl3an2 | |- ( ( A e. CC /\ ( B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op ( B .op T ) ) ` x ) = ( A .h ( ( B .op T ) ` x ) ) ) |
| 22 | 21 | 3expia | |- ( ( A e. CC /\ ( B e. CC /\ T : ~H --> ~H ) ) -> ( x e. ~H -> ( ( A .op ( B .op T ) ) ` x ) = ( A .h ( ( B .op T ) ` x ) ) ) ) |
| 23 | 22 | 3impb | |- ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) -> ( x e. ~H -> ( ( A .op ( B .op T ) ) ` x ) = ( A .h ( ( B .op T ) ` x ) ) ) ) |
| 24 | 23 | imp | |- ( ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op ( B .op T ) ) ` x ) = ( A .h ( ( B .op T ) ` x ) ) ) |
| 25 | 18 24 | eqtr4d | |- ( ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A x. B ) .op T ) ` x ) = ( ( A .op ( B .op T ) ) ` x ) ) |
| 26 | 25 | ralrimiva | |- ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) -> A. x e. ~H ( ( ( A x. B ) .op T ) ` x ) = ( ( A .op ( B .op T ) ) ` x ) ) |
| 27 | homulcl | |- ( ( ( A x. B ) e. CC /\ T : ~H --> ~H ) -> ( ( A x. B ) .op T ) : ~H --> ~H ) |
|
| 28 | 1 27 | stoic3 | |- ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) -> ( ( A x. B ) .op T ) : ~H --> ~H ) |
| 29 | homulcl | |- ( ( A e. CC /\ ( B .op T ) : ~H --> ~H ) -> ( A .op ( B .op T ) ) : ~H --> ~H ) |
|
| 30 | 19 29 | sylan2 | |- ( ( A e. CC /\ ( B e. CC /\ T : ~H --> ~H ) ) -> ( A .op ( B .op T ) ) : ~H --> ~H ) |
| 31 | 30 | 3impb | |- ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) -> ( A .op ( B .op T ) ) : ~H --> ~H ) |
| 32 | hoeq | |- ( ( ( ( A x. B ) .op T ) : ~H --> ~H /\ ( A .op ( B .op T ) ) : ~H --> ~H ) -> ( A. x e. ~H ( ( ( A x. B ) .op T ) ` x ) = ( ( A .op ( B .op T ) ) ` x ) <-> ( ( A x. B ) .op T ) = ( A .op ( B .op T ) ) ) ) |
|
| 33 | 28 31 32 | syl2anc | |- ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) -> ( A. x e. ~H ( ( ( A x. B ) .op T ) ` x ) = ( ( A .op ( B .op T ) ) ` x ) <-> ( ( A x. B ) .op T ) = ( A .op ( B .op T ) ) ) ) |
| 34 | 26 33 | mpbid | |- ( ( A e. CC /\ B e. CC /\ T : ~H --> ~H ) -> ( ( A x. B ) .op T ) = ( A .op ( B .op T ) ) ) |