This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the difference of two Hilbert space operators. (Contributed by NM, 10-Nov-2000) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hodval | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ A e. ~H ) -> ( ( S -op T ) ` A ) = ( ( S ` A ) -h ( T ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hodmval | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S -op T ) = ( x e. ~H |-> ( ( S ` x ) -h ( T ` x ) ) ) ) |
|
| 2 | 1 | fveq1d | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( S -op T ) ` A ) = ( ( x e. ~H |-> ( ( S ` x ) -h ( T ` x ) ) ) ` A ) ) |
| 3 | fveq2 | |- ( x = A -> ( S ` x ) = ( S ` A ) ) |
|
| 4 | fveq2 | |- ( x = A -> ( T ` x ) = ( T ` A ) ) |
|
| 5 | 3 4 | oveq12d | |- ( x = A -> ( ( S ` x ) -h ( T ` x ) ) = ( ( S ` A ) -h ( T ` A ) ) ) |
| 6 | eqid | |- ( x e. ~H |-> ( ( S ` x ) -h ( T ` x ) ) ) = ( x e. ~H |-> ( ( S ` x ) -h ( T ` x ) ) ) |
|
| 7 | ovex | |- ( ( S ` A ) -h ( T ` A ) ) e. _V |
|
| 8 | 5 6 7 | fvmpt | |- ( A e. ~H -> ( ( x e. ~H |-> ( ( S ` x ) -h ( T ` x ) ) ) ` A ) = ( ( S ` A ) -h ( T ` A ) ) ) |
| 9 | 2 8 | sylan9eq | |- ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ A e. ~H ) -> ( ( S -op T ) ` A ) = ( ( S ` A ) -h ( T ` A ) ) ) |
| 10 | 9 | 3impa | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ A e. ~H ) -> ( ( S -op T ) ` A ) = ( ( S ` A ) -h ( T ` A ) ) ) |