This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associativity of sum of Hilbert space operators. (Contributed by NM, 26-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hods.1 | |- R : ~H --> ~H |
|
| hods.2 | |- S : ~H --> ~H |
||
| hods.3 | |- T : ~H --> ~H |
||
| Assertion | hoaddassi | |- ( ( R +op S ) +op T ) = ( R +op ( S +op T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hods.1 | |- R : ~H --> ~H |
|
| 2 | hods.2 | |- S : ~H --> ~H |
|
| 3 | hods.3 | |- T : ~H --> ~H |
|
| 4 | hosval | |- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ x e. ~H ) -> ( ( R +op S ) ` x ) = ( ( R ` x ) +h ( S ` x ) ) ) |
|
| 5 | 1 2 4 | mp3an12 | |- ( x e. ~H -> ( ( R +op S ) ` x ) = ( ( R ` x ) +h ( S ` x ) ) ) |
| 6 | 5 | oveq1d | |- ( x e. ~H -> ( ( ( R +op S ) ` x ) +h ( T ` x ) ) = ( ( ( R ` x ) +h ( S ` x ) ) +h ( T ` x ) ) ) |
| 7 | 1 2 | hoaddcli | |- ( R +op S ) : ~H --> ~H |
| 8 | hosval | |- ( ( ( R +op S ) : ~H --> ~H /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( ( R +op S ) +op T ) ` x ) = ( ( ( R +op S ) ` x ) +h ( T ` x ) ) ) |
|
| 9 | 7 3 8 | mp3an12 | |- ( x e. ~H -> ( ( ( R +op S ) +op T ) ` x ) = ( ( ( R +op S ) ` x ) +h ( T ` x ) ) ) |
| 10 | hosval | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( S +op T ) ` x ) = ( ( S ` x ) +h ( T ` x ) ) ) |
|
| 11 | 2 3 10 | mp3an12 | |- ( x e. ~H -> ( ( S +op T ) ` x ) = ( ( S ` x ) +h ( T ` x ) ) ) |
| 12 | 11 | oveq2d | |- ( x e. ~H -> ( ( R ` x ) +h ( ( S +op T ) ` x ) ) = ( ( R ` x ) +h ( ( S ` x ) +h ( T ` x ) ) ) ) |
| 13 | 2 3 | hoaddcli | |- ( S +op T ) : ~H --> ~H |
| 14 | hosval | |- ( ( R : ~H --> ~H /\ ( S +op T ) : ~H --> ~H /\ x e. ~H ) -> ( ( R +op ( S +op T ) ) ` x ) = ( ( R ` x ) +h ( ( S +op T ) ` x ) ) ) |
|
| 15 | 1 13 14 | mp3an12 | |- ( x e. ~H -> ( ( R +op ( S +op T ) ) ` x ) = ( ( R ` x ) +h ( ( S +op T ) ` x ) ) ) |
| 16 | 1 | ffvelcdmi | |- ( x e. ~H -> ( R ` x ) e. ~H ) |
| 17 | 2 | ffvelcdmi | |- ( x e. ~H -> ( S ` x ) e. ~H ) |
| 18 | 3 | ffvelcdmi | |- ( x e. ~H -> ( T ` x ) e. ~H ) |
| 19 | ax-hvass | |- ( ( ( R ` x ) e. ~H /\ ( S ` x ) e. ~H /\ ( T ` x ) e. ~H ) -> ( ( ( R ` x ) +h ( S ` x ) ) +h ( T ` x ) ) = ( ( R ` x ) +h ( ( S ` x ) +h ( T ` x ) ) ) ) |
|
| 20 | 16 17 18 19 | syl3anc | |- ( x e. ~H -> ( ( ( R ` x ) +h ( S ` x ) ) +h ( T ` x ) ) = ( ( R ` x ) +h ( ( S ` x ) +h ( T ` x ) ) ) ) |
| 21 | 12 15 20 | 3eqtr4d | |- ( x e. ~H -> ( ( R +op ( S +op T ) ) ` x ) = ( ( ( R ` x ) +h ( S ` x ) ) +h ( T ` x ) ) ) |
| 22 | 6 9 21 | 3eqtr4d | |- ( x e. ~H -> ( ( ( R +op S ) +op T ) ` x ) = ( ( R +op ( S +op T ) ) ` x ) ) |
| 23 | 22 | rgen | |- A. x e. ~H ( ( ( R +op S ) +op T ) ` x ) = ( ( R +op ( S +op T ) ) ` x ) |
| 24 | 7 3 | hoaddcli | |- ( ( R +op S ) +op T ) : ~H --> ~H |
| 25 | 1 13 | hoaddcli | |- ( R +op ( S +op T ) ) : ~H --> ~H |
| 26 | 24 25 | hoeqi | |- ( A. x e. ~H ( ( ( R +op S ) +op T ) ` x ) = ( ( R +op ( S +op T ) ) ` x ) <-> ( ( R +op S ) +op T ) = ( R +op ( S +op T ) ) ) |
| 27 | 23 26 | mpbi | |- ( ( R +op S ) +op T ) = ( R +op ( S +op T ) ) |