This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of 4 terms in a sum of Hilbert space operators. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hoadd4 | |- ( ( ( R : ~H --> ~H /\ S : ~H --> ~H ) /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( ( R +op S ) +op ( T +op U ) ) = ( ( R +op T ) +op ( S +op U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoadd32 | |- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( R +op S ) +op T ) = ( ( R +op T ) +op S ) ) |
|
| 2 | 1 | oveq1d | |- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( ( R +op S ) +op T ) +op U ) = ( ( ( R +op T ) +op S ) +op U ) ) |
| 3 | 2 | 3expa | |- ( ( ( R : ~H --> ~H /\ S : ~H --> ~H ) /\ T : ~H --> ~H ) -> ( ( ( R +op S ) +op T ) +op U ) = ( ( ( R +op T ) +op S ) +op U ) ) |
| 4 | 3 | adantrr | |- ( ( ( R : ~H --> ~H /\ S : ~H --> ~H ) /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( ( ( R +op S ) +op T ) +op U ) = ( ( ( R +op T ) +op S ) +op U ) ) |
| 5 | hoaddcl | |- ( ( R : ~H --> ~H /\ S : ~H --> ~H ) -> ( R +op S ) : ~H --> ~H ) |
|
| 6 | hoaddass | |- ( ( ( R +op S ) : ~H --> ~H /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( ( R +op S ) +op T ) +op U ) = ( ( R +op S ) +op ( T +op U ) ) ) |
|
| 7 | 6 | 3expb | |- ( ( ( R +op S ) : ~H --> ~H /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( ( ( R +op S ) +op T ) +op U ) = ( ( R +op S ) +op ( T +op U ) ) ) |
| 8 | 5 7 | sylan | |- ( ( ( R : ~H --> ~H /\ S : ~H --> ~H ) /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( ( ( R +op S ) +op T ) +op U ) = ( ( R +op S ) +op ( T +op U ) ) ) |
| 9 | hoaddcl | |- ( ( R : ~H --> ~H /\ T : ~H --> ~H ) -> ( R +op T ) : ~H --> ~H ) |
|
| 10 | hoaddass | |- ( ( ( R +op T ) : ~H --> ~H /\ S : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( ( R +op T ) +op S ) +op U ) = ( ( R +op T ) +op ( S +op U ) ) ) |
|
| 11 | 10 | 3expb | |- ( ( ( R +op T ) : ~H --> ~H /\ ( S : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( ( ( R +op T ) +op S ) +op U ) = ( ( R +op T ) +op ( S +op U ) ) ) |
| 12 | 9 11 | sylan | |- ( ( ( R : ~H --> ~H /\ T : ~H --> ~H ) /\ ( S : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( ( ( R +op T ) +op S ) +op U ) = ( ( R +op T ) +op ( S +op U ) ) ) |
| 13 | 12 | an4s | |- ( ( ( R : ~H --> ~H /\ S : ~H --> ~H ) /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( ( ( R +op T ) +op S ) +op U ) = ( ( R +op T ) +op ( S +op U ) ) ) |
| 14 | 4 8 13 | 3eqtr3d | |- ( ( ( R : ~H --> ~H /\ S : ~H --> ~H ) /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( ( R +op S ) +op ( T +op U ) ) = ( ( R +op T ) +op ( S +op U ) ) ) |