This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for Hilbert space operator difference. (Contributed by NM, 23-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hocsubdir | |- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( R -op S ) o. T ) = ( ( R o. T ) -op ( S o. T ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( R = if ( R : ~H --> ~H , R , 0hop ) -> ( R -op S ) = ( if ( R : ~H --> ~H , R , 0hop ) -op S ) ) |
|
| 2 | 1 | coeq1d | |- ( R = if ( R : ~H --> ~H , R , 0hop ) -> ( ( R -op S ) o. T ) = ( ( if ( R : ~H --> ~H , R , 0hop ) -op S ) o. T ) ) |
| 3 | coeq1 | |- ( R = if ( R : ~H --> ~H , R , 0hop ) -> ( R o. T ) = ( if ( R : ~H --> ~H , R , 0hop ) o. T ) ) |
|
| 4 | 3 | oveq1d | |- ( R = if ( R : ~H --> ~H , R , 0hop ) -> ( ( R o. T ) -op ( S o. T ) ) = ( ( if ( R : ~H --> ~H , R , 0hop ) o. T ) -op ( S o. T ) ) ) |
| 5 | 2 4 | eqeq12d | |- ( R = if ( R : ~H --> ~H , R , 0hop ) -> ( ( ( R -op S ) o. T ) = ( ( R o. T ) -op ( S o. T ) ) <-> ( ( if ( R : ~H --> ~H , R , 0hop ) -op S ) o. T ) = ( ( if ( R : ~H --> ~H , R , 0hop ) o. T ) -op ( S o. T ) ) ) ) |
| 6 | oveq2 | |- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( if ( R : ~H --> ~H , R , 0hop ) -op S ) = ( if ( R : ~H --> ~H , R , 0hop ) -op if ( S : ~H --> ~H , S , 0hop ) ) ) |
|
| 7 | 6 | coeq1d | |- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( ( if ( R : ~H --> ~H , R , 0hop ) -op S ) o. T ) = ( ( if ( R : ~H --> ~H , R , 0hop ) -op if ( S : ~H --> ~H , S , 0hop ) ) o. T ) ) |
| 8 | coeq1 | |- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( S o. T ) = ( if ( S : ~H --> ~H , S , 0hop ) o. T ) ) |
|
| 9 | 8 | oveq2d | |- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( ( if ( R : ~H --> ~H , R , 0hop ) o. T ) -op ( S o. T ) ) = ( ( if ( R : ~H --> ~H , R , 0hop ) o. T ) -op ( if ( S : ~H --> ~H , S , 0hop ) o. T ) ) ) |
| 10 | 7 9 | eqeq12d | |- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( ( ( if ( R : ~H --> ~H , R , 0hop ) -op S ) o. T ) = ( ( if ( R : ~H --> ~H , R , 0hop ) o. T ) -op ( S o. T ) ) <-> ( ( if ( R : ~H --> ~H , R , 0hop ) -op if ( S : ~H --> ~H , S , 0hop ) ) o. T ) = ( ( if ( R : ~H --> ~H , R , 0hop ) o. T ) -op ( if ( S : ~H --> ~H , S , 0hop ) o. T ) ) ) ) |
| 11 | coeq2 | |- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( ( if ( R : ~H --> ~H , R , 0hop ) -op if ( S : ~H --> ~H , S , 0hop ) ) o. T ) = ( ( if ( R : ~H --> ~H , R , 0hop ) -op if ( S : ~H --> ~H , S , 0hop ) ) o. if ( T : ~H --> ~H , T , 0hop ) ) ) |
|
| 12 | coeq2 | |- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( if ( R : ~H --> ~H , R , 0hop ) o. T ) = ( if ( R : ~H --> ~H , R , 0hop ) o. if ( T : ~H --> ~H , T , 0hop ) ) ) |
|
| 13 | coeq2 | |- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( if ( S : ~H --> ~H , S , 0hop ) o. T ) = ( if ( S : ~H --> ~H , S , 0hop ) o. if ( T : ~H --> ~H , T , 0hop ) ) ) |
|
| 14 | 12 13 | oveq12d | |- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( ( if ( R : ~H --> ~H , R , 0hop ) o. T ) -op ( if ( S : ~H --> ~H , S , 0hop ) o. T ) ) = ( ( if ( R : ~H --> ~H , R , 0hop ) o. if ( T : ~H --> ~H , T , 0hop ) ) -op ( if ( S : ~H --> ~H , S , 0hop ) o. if ( T : ~H --> ~H , T , 0hop ) ) ) ) |
| 15 | 11 14 | eqeq12d | |- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( ( ( if ( R : ~H --> ~H , R , 0hop ) -op if ( S : ~H --> ~H , S , 0hop ) ) o. T ) = ( ( if ( R : ~H --> ~H , R , 0hop ) o. T ) -op ( if ( S : ~H --> ~H , S , 0hop ) o. T ) ) <-> ( ( if ( R : ~H --> ~H , R , 0hop ) -op if ( S : ~H --> ~H , S , 0hop ) ) o. if ( T : ~H --> ~H , T , 0hop ) ) = ( ( if ( R : ~H --> ~H , R , 0hop ) o. if ( T : ~H --> ~H , T , 0hop ) ) -op ( if ( S : ~H --> ~H , S , 0hop ) o. if ( T : ~H --> ~H , T , 0hop ) ) ) ) ) |
| 16 | ho0f | |- 0hop : ~H --> ~H |
|
| 17 | 16 | elimf | |- if ( R : ~H --> ~H , R , 0hop ) : ~H --> ~H |
| 18 | 16 | elimf | |- if ( S : ~H --> ~H , S , 0hop ) : ~H --> ~H |
| 19 | 16 | elimf | |- if ( T : ~H --> ~H , T , 0hop ) : ~H --> ~H |
| 20 | 17 18 19 | hocsubdiri | |- ( ( if ( R : ~H --> ~H , R , 0hop ) -op if ( S : ~H --> ~H , S , 0hop ) ) o. if ( T : ~H --> ~H , T , 0hop ) ) = ( ( if ( R : ~H --> ~H , R , 0hop ) o. if ( T : ~H --> ~H , T , 0hop ) ) -op ( if ( S : ~H --> ~H , S , 0hop ) o. if ( T : ~H --> ~H , T , 0hop ) ) ) |
| 21 | 5 10 15 20 | dedth3h | |- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( R -op S ) o. T ) = ( ( R o. T ) -op ( S o. T ) ) ) |