This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associativity of sum of Hilbert space operators. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hoaddass | |- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( R +op S ) +op T ) = ( R +op ( S +op T ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( R = if ( R : ~H --> ~H , R , 0hop ) -> ( R +op S ) = ( if ( R : ~H --> ~H , R , 0hop ) +op S ) ) |
|
| 2 | 1 | oveq1d | |- ( R = if ( R : ~H --> ~H , R , 0hop ) -> ( ( R +op S ) +op T ) = ( ( if ( R : ~H --> ~H , R , 0hop ) +op S ) +op T ) ) |
| 3 | oveq1 | |- ( R = if ( R : ~H --> ~H , R , 0hop ) -> ( R +op ( S +op T ) ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( S +op T ) ) ) |
|
| 4 | 2 3 | eqeq12d | |- ( R = if ( R : ~H --> ~H , R , 0hop ) -> ( ( ( R +op S ) +op T ) = ( R +op ( S +op T ) ) <-> ( ( if ( R : ~H --> ~H , R , 0hop ) +op S ) +op T ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( S +op T ) ) ) ) |
| 5 | oveq2 | |- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( if ( R : ~H --> ~H , R , 0hop ) +op S ) = ( if ( R : ~H --> ~H , R , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) ) |
|
| 6 | 5 | oveq1d | |- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( ( if ( R : ~H --> ~H , R , 0hop ) +op S ) +op T ) = ( ( if ( R : ~H --> ~H , R , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) +op T ) ) |
| 7 | oveq1 | |- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( S +op T ) = ( if ( S : ~H --> ~H , S , 0hop ) +op T ) ) |
|
| 8 | 7 | oveq2d | |- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( if ( R : ~H --> ~H , R , 0hop ) +op ( S +op T ) ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( if ( S : ~H --> ~H , S , 0hop ) +op T ) ) ) |
| 9 | 6 8 | eqeq12d | |- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( ( ( if ( R : ~H --> ~H , R , 0hop ) +op S ) +op T ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( S +op T ) ) <-> ( ( if ( R : ~H --> ~H , R , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) +op T ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( if ( S : ~H --> ~H , S , 0hop ) +op T ) ) ) ) |
| 10 | oveq2 | |- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( ( if ( R : ~H --> ~H , R , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) +op T ) = ( ( if ( R : ~H --> ~H , R , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) +op if ( T : ~H --> ~H , T , 0hop ) ) ) |
|
| 11 | oveq2 | |- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( if ( S : ~H --> ~H , S , 0hop ) +op T ) = ( if ( S : ~H --> ~H , S , 0hop ) +op if ( T : ~H --> ~H , T , 0hop ) ) ) |
|
| 12 | 11 | oveq2d | |- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( if ( R : ~H --> ~H , R , 0hop ) +op ( if ( S : ~H --> ~H , S , 0hop ) +op T ) ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( if ( S : ~H --> ~H , S , 0hop ) +op if ( T : ~H --> ~H , T , 0hop ) ) ) ) |
| 13 | 10 12 | eqeq12d | |- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( ( ( if ( R : ~H --> ~H , R , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) +op T ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( if ( S : ~H --> ~H , S , 0hop ) +op T ) ) <-> ( ( if ( R : ~H --> ~H , R , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) +op if ( T : ~H --> ~H , T , 0hop ) ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( if ( S : ~H --> ~H , S , 0hop ) +op if ( T : ~H --> ~H , T , 0hop ) ) ) ) ) |
| 14 | ho0f | |- 0hop : ~H --> ~H |
|
| 15 | 14 | elimf | |- if ( R : ~H --> ~H , R , 0hop ) : ~H --> ~H |
| 16 | 14 | elimf | |- if ( S : ~H --> ~H , S , 0hop ) : ~H --> ~H |
| 17 | 14 | elimf | |- if ( T : ~H --> ~H , T , 0hop ) : ~H --> ~H |
| 18 | 15 16 17 | hoaddassi | |- ( ( if ( R : ~H --> ~H , R , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) +op if ( T : ~H --> ~H , T , 0hop ) ) = ( if ( R : ~H --> ~H , R , 0hop ) +op ( if ( S : ~H --> ~H , S , 0hop ) +op if ( T : ~H --> ~H , T , 0hop ) ) ) |
| 19 | 4 9 13 18 | dedth3h | |- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( R +op S ) +op T ) = ( R +op ( S +op T ) ) ) |