This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law for Hilbert space operator sum that swaps the second and third terms. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hoadd32 | |- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( R +op S ) +op T ) = ( ( R +op T ) +op S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoaddcom | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S +op T ) = ( T +op S ) ) |
|
| 2 | 1 | 3adant1 | |- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S +op T ) = ( T +op S ) ) |
| 3 | 2 | oveq2d | |- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ T : ~H --> ~H ) -> ( R +op ( S +op T ) ) = ( R +op ( T +op S ) ) ) |
| 4 | hoaddass | |- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( R +op S ) +op T ) = ( R +op ( S +op T ) ) ) |
|
| 5 | hoaddass | |- ( ( R : ~H --> ~H /\ T : ~H --> ~H /\ S : ~H --> ~H ) -> ( ( R +op T ) +op S ) = ( R +op ( T +op S ) ) ) |
|
| 6 | 5 | 3com23 | |- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( R +op T ) +op S ) = ( R +op ( T +op S ) ) ) |
| 7 | 3 4 6 | 3eqtr4d | |- ( ( R : ~H --> ~H /\ S : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( R +op S ) +op T ) = ( ( R +op T ) +op S ) ) |