This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of Hilbert space operators is an operator. (Contributed by NM, 21-Feb-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hoaddcl | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S +op T ) : ~H --> ~H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffvelcdm | |- ( ( S : ~H --> ~H /\ x e. ~H ) -> ( S ` x ) e. ~H ) |
|
| 2 | 1 | adantlr | |- ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( S ` x ) e. ~H ) |
| 3 | ffvelcdm | |- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( T ` x ) e. ~H ) |
|
| 4 | 3 | adantll | |- ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( T ` x ) e. ~H ) |
| 5 | hvaddcl | |- ( ( ( S ` x ) e. ~H /\ ( T ` x ) e. ~H ) -> ( ( S ` x ) +h ( T ` x ) ) e. ~H ) |
|
| 6 | 2 4 5 | syl2anc | |- ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( S ` x ) +h ( T ` x ) ) e. ~H ) |
| 7 | 6 | fmpttd | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( x e. ~H |-> ( ( S ` x ) +h ( T ` x ) ) ) : ~H --> ~H ) |
| 8 | hosmval | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S +op T ) = ( x e. ~H |-> ( ( S ` x ) +h ( T ` x ) ) ) ) |
|
| 9 | 8 | feq1d | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( ( S +op T ) : ~H --> ~H <-> ( x e. ~H |-> ( ( S ` x ) +h ( T ` x ) ) ) : ~H --> ~H ) ) |
| 10 | 7 9 | mpbird | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S +op T ) : ~H --> ~H ) |