This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Hermitian operator is a bounded linear operator (Hellinger-Toeplitz Theorem). (Contributed by NM, 18-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmopbdoptHIL | |- ( T e. HrmOp -> T e. BndLinOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmoplin | |- ( T e. HrmOp -> T e. LinOp ) |
|
| 2 | hmop | |- ( ( T e. HrmOp /\ x e. ~H /\ y e. ~H ) -> ( x .ih ( T ` y ) ) = ( ( T ` x ) .ih y ) ) |
|
| 3 | 2 | 3expib | |- ( T e. HrmOp -> ( ( x e. ~H /\ y e. ~H ) -> ( x .ih ( T ` y ) ) = ( ( T ` x ) .ih y ) ) ) |
| 4 | 3 | ralrimivv | |- ( T e. HrmOp -> A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( T ` x ) .ih y ) ) |
| 5 | hilhl | |- <. <. +h , .h >. , normh >. e. CHilOLD |
|
| 6 | df-hba | |- ~H = ( BaseSet ` <. <. +h , .h >. , normh >. ) |
|
| 7 | eqid | |- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
|
| 8 | 7 | hhip | |- .ih = ( .iOLD ` <. <. +h , .h >. , normh >. ) |
| 9 | eqid | |- ( <. <. +h , .h >. , normh >. LnOp <. <. +h , .h >. , normh >. ) = ( <. <. +h , .h >. , normh >. LnOp <. <. +h , .h >. , normh >. ) |
|
| 10 | 7 9 | hhlnoi | |- LinOp = ( <. <. +h , .h >. , normh >. LnOp <. <. +h , .h >. , normh >. ) |
| 11 | eqid | |- ( <. <. +h , .h >. , normh >. BLnOp <. <. +h , .h >. , normh >. ) = ( <. <. +h , .h >. , normh >. BLnOp <. <. +h , .h >. , normh >. ) |
|
| 12 | 7 11 | hhbloi | |- BndLinOp = ( <. <. +h , .h >. , normh >. BLnOp <. <. +h , .h >. , normh >. ) |
| 13 | 6 8 10 12 | htth | |- ( ( <. <. +h , .h >. , normh >. e. CHilOLD /\ T e. LinOp /\ A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( T ` x ) .ih y ) ) -> T e. BndLinOp ) |
| 14 | 5 13 | mp3an1 | |- ( ( T e. LinOp /\ A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( T ` x ) .ih y ) ) -> T e. BndLinOp ) |
| 15 | 1 4 14 | syl2anc | |- ( T e. HrmOp -> T e. BndLinOp ) |