This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hellinger-Toeplitz Theorem: any self-adjoint linear operator defined on all of Hilbert space is bounded. Theorem 10.1-1 of Kreyszig p. 525. Discovered by E. Hellinger and O. Toeplitz in 1910, "it aroused both admiration and puzzlement since the theorem establishes a relation between properties of two different kinds, namely, the properties of being defined everywhere and being bounded." (Contributed by NM, 11-Jan-2008) (Revised by Mario Carneiro, 23-Aug-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | htth.1 | |- X = ( BaseSet ` U ) |
|
| htth.2 | |- P = ( .iOLD ` U ) |
||
| htth.3 | |- L = ( U LnOp U ) |
||
| htth.4 | |- B = ( U BLnOp U ) |
||
| Assertion | htth | |- ( ( U e. CHilOLD /\ T e. L /\ A. x e. X A. y e. X ( x P ( T ` y ) ) = ( ( T ` x ) P y ) ) -> T e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | htth.1 | |- X = ( BaseSet ` U ) |
|
| 2 | htth.2 | |- P = ( .iOLD ` U ) |
|
| 3 | htth.3 | |- L = ( U LnOp U ) |
|
| 4 | htth.4 | |- B = ( U BLnOp U ) |
|
| 5 | oveq12 | |- ( ( U = if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) /\ U = if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) -> ( U LnOp U ) = ( if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) LnOp if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ) |
|
| 6 | 5 | anidms | |- ( U = if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) -> ( U LnOp U ) = ( if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) LnOp if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ) |
| 7 | 3 6 | eqtrid | |- ( U = if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) -> L = ( if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) LnOp if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ) |
| 8 | 7 | eleq2d | |- ( U = if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) -> ( T e. L <-> T e. ( if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) LnOp if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ) ) |
| 9 | fveq2 | |- ( U = if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) -> ( BaseSet ` U ) = ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ) |
|
| 10 | 1 9 | eqtrid | |- ( U = if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) -> X = ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ) |
| 11 | fveq2 | |- ( U = if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) -> ( .iOLD ` U ) = ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ) |
|
| 12 | 2 11 | eqtrid | |- ( U = if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) -> P = ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ) |
| 13 | 12 | oveqd | |- ( U = if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) -> ( x P ( T ` y ) ) = ( x ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` y ) ) ) |
| 14 | 12 | oveqd | |- ( U = if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) -> ( ( T ` x ) P y ) = ( ( T ` x ) ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) y ) ) |
| 15 | 13 14 | eqeq12d | |- ( U = if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) -> ( ( x P ( T ` y ) ) = ( ( T ` x ) P y ) <-> ( x ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` y ) ) = ( ( T ` x ) ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) y ) ) ) |
| 16 | 10 15 | raleqbidv | |- ( U = if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) -> ( A. y e. X ( x P ( T ` y ) ) = ( ( T ` x ) P y ) <-> A. y e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( x ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` y ) ) = ( ( T ` x ) ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) y ) ) ) |
| 17 | 10 16 | raleqbidv | |- ( U = if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) -> ( A. x e. X A. y e. X ( x P ( T ` y ) ) = ( ( T ` x ) P y ) <-> A. x e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) A. y e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( x ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` y ) ) = ( ( T ` x ) ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) y ) ) ) |
| 18 | 8 17 | anbi12d | |- ( U = if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) -> ( ( T e. L /\ A. x e. X A. y e. X ( x P ( T ` y ) ) = ( ( T ` x ) P y ) ) <-> ( T e. ( if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) LnOp if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) /\ A. x e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) A. y e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( x ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` y ) ) = ( ( T ` x ) ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) y ) ) ) ) |
| 19 | oveq12 | |- ( ( U = if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) /\ U = if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) -> ( U BLnOp U ) = ( if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) BLnOp if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ) |
|
| 20 | 19 | anidms | |- ( U = if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) -> ( U BLnOp U ) = ( if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) BLnOp if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ) |
| 21 | 4 20 | eqtrid | |- ( U = if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) -> B = ( if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) BLnOp if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ) |
| 22 | 21 | eleq2d | |- ( U = if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) -> ( T e. B <-> T e. ( if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) BLnOp if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ) ) |
| 23 | 18 22 | imbi12d | |- ( U = if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) -> ( ( ( T e. L /\ A. x e. X A. y e. X ( x P ( T ` y ) ) = ( ( T ` x ) P y ) ) -> T e. B ) <-> ( ( T e. ( if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) LnOp if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) /\ A. x e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) A. y e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( x ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` y ) ) = ( ( T ` x ) ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) y ) ) -> T e. ( if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) BLnOp if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ) ) ) |
| 24 | eqid | |- ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) = ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) |
|
| 25 | eqid | |- ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) = ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) |
|
| 26 | eqid | |- ( if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) LnOp if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) = ( if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) LnOp if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) |
|
| 27 | eqid | |- ( if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) BLnOp if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) = ( if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) BLnOp if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) |
|
| 28 | eqid | |- ( normCV ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) = ( normCV ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) |
|
| 29 | eqid | |- <. <. + , x. >. , abs >. = <. <. + , x. >. , abs >. |
|
| 30 | 29 | cnchl | |- <. <. + , x. >. , abs >. e. CHilOLD |
| 31 | 30 | elimel | |- if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) e. CHilOLD |
| 32 | simpl | |- ( ( T e. ( if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) LnOp if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) /\ A. x e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) A. y e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( x ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` y ) ) = ( ( T ` x ) ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) y ) ) -> T e. ( if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) LnOp if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ) |
|
| 33 | simpr | |- ( ( T e. ( if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) LnOp if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) /\ A. x e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) A. y e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( x ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` y ) ) = ( ( T ` x ) ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) y ) ) -> A. x e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) A. y e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( x ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` y ) ) = ( ( T ` x ) ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) y ) ) |
|
| 34 | oveq1 | |- ( x = u -> ( x ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` y ) ) = ( u ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` y ) ) ) |
|
| 35 | fveq2 | |- ( x = u -> ( T ` x ) = ( T ` u ) ) |
|
| 36 | 35 | oveq1d | |- ( x = u -> ( ( T ` x ) ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) y ) = ( ( T ` u ) ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) y ) ) |
| 37 | 34 36 | eqeq12d | |- ( x = u -> ( ( x ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` y ) ) = ( ( T ` x ) ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) y ) <-> ( u ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` y ) ) = ( ( T ` u ) ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) y ) ) ) |
| 38 | fveq2 | |- ( y = v -> ( T ` y ) = ( T ` v ) ) |
|
| 39 | 38 | oveq2d | |- ( y = v -> ( u ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` y ) ) = ( u ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` v ) ) ) |
| 40 | oveq2 | |- ( y = v -> ( ( T ` u ) ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) y ) = ( ( T ` u ) ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) v ) ) |
|
| 41 | 39 40 | eqeq12d | |- ( y = v -> ( ( u ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` y ) ) = ( ( T ` u ) ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) y ) <-> ( u ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` v ) ) = ( ( T ` u ) ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) v ) ) ) |
| 42 | 37 41 | cbvral2vw | |- ( A. x e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) A. y e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( x ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` y ) ) = ( ( T ` x ) ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) y ) <-> A. u e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) A. v e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( u ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` v ) ) = ( ( T ` u ) ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) v ) ) |
| 43 | 33 42 | sylib | |- ( ( T e. ( if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) LnOp if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) /\ A. x e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) A. y e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( x ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` y ) ) = ( ( T ` x ) ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) y ) ) -> A. u e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) A. v e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( u ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` v ) ) = ( ( T ` u ) ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) v ) ) |
| 44 | oveq1 | |- ( y = w -> ( y ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` x ) ) = ( w ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` x ) ) ) |
|
| 45 | 44 | cbvmptv | |- ( y e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) |-> ( y ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` x ) ) ) = ( w e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) |-> ( w ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` x ) ) ) |
| 46 | fveq2 | |- ( x = z -> ( T ` x ) = ( T ` z ) ) |
|
| 47 | 46 | oveq2d | |- ( x = z -> ( w ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` x ) ) = ( w ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` z ) ) ) |
| 48 | 47 | mpteq2dv | |- ( x = z -> ( w e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) |-> ( w ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` x ) ) ) = ( w e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) |-> ( w ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` z ) ) ) ) |
| 49 | 45 48 | eqtrid | |- ( x = z -> ( y e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) |-> ( y ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` x ) ) ) = ( w e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) |-> ( w ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` z ) ) ) ) |
| 50 | 49 | cbvmptv | |- ( x e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) |-> ( y e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) |-> ( y ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` x ) ) ) ) = ( z e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) |-> ( w e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) |-> ( w ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` z ) ) ) ) |
| 51 | fveq2 | |- ( x = z -> ( ( normCV ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ` x ) = ( ( normCV ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ` z ) ) |
|
| 52 | 51 | breq1d | |- ( x = z -> ( ( ( normCV ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ` x ) <_ 1 <-> ( ( normCV ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ` z ) <_ 1 ) ) |
| 53 | 52 | cbvrabv | |- { x e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) | ( ( normCV ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ` x ) <_ 1 } = { z e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) | ( ( normCV ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ` z ) <_ 1 } |
| 54 | 53 | imaeq2i | |- ( ( x e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) |-> ( y e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) |-> ( y ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` x ) ) ) ) " { x e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) | ( ( normCV ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ` x ) <_ 1 } ) = ( ( x e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) |-> ( y e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) |-> ( y ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` x ) ) ) ) " { z e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) | ( ( normCV ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ` z ) <_ 1 } ) |
| 55 | 24 25 26 27 28 31 29 32 43 50 54 | htthlem | |- ( ( T e. ( if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) LnOp if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) /\ A. x e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) A. y e. ( BaseSet ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( x ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ( T ` y ) ) = ( ( T ` x ) ( .iOLD ` if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) y ) ) -> T e. ( if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) BLnOp if ( U e. CHilOLD , U , <. <. + , x. >. , abs >. ) ) ) |
| 56 | 23 55 | dedth | |- ( U e. CHilOLD -> ( ( T e. L /\ A. x e. X A. y e. X ( x P ( T ` y ) ) = ( ( T ` x ) P y ) ) -> T e. B ) ) |
| 57 | 56 | 3impib | |- ( ( U e. CHilOLD /\ T e. L /\ A. x e. X A. y e. X ( x P ( T ` y ) ) = ( ( T ` x ) P y ) ) -> T e. B ) |