This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Basic inner product property of a Hermitian operator. (Contributed by NM, 19-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmop | |- ( ( T e. HrmOp /\ A e. ~H /\ B e. ~H ) -> ( A .ih ( T ` B ) ) = ( ( T ` A ) .ih B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elhmop | |- ( T e. HrmOp <-> ( T : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( T ` x ) .ih y ) ) ) |
|
| 2 | 1 | simprbi | |- ( T e. HrmOp -> A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( T ` x ) .ih y ) ) |
| 3 | 2 | 3ad2ant1 | |- ( ( T e. HrmOp /\ A e. ~H /\ B e. ~H ) -> A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( T ` x ) .ih y ) ) |
| 4 | oveq1 | |- ( x = A -> ( x .ih ( T ` y ) ) = ( A .ih ( T ` y ) ) ) |
|
| 5 | fveq2 | |- ( x = A -> ( T ` x ) = ( T ` A ) ) |
|
| 6 | 5 | oveq1d | |- ( x = A -> ( ( T ` x ) .ih y ) = ( ( T ` A ) .ih y ) ) |
| 7 | 4 6 | eqeq12d | |- ( x = A -> ( ( x .ih ( T ` y ) ) = ( ( T ` x ) .ih y ) <-> ( A .ih ( T ` y ) ) = ( ( T ` A ) .ih y ) ) ) |
| 8 | fveq2 | |- ( y = B -> ( T ` y ) = ( T ` B ) ) |
|
| 9 | 8 | oveq2d | |- ( y = B -> ( A .ih ( T ` y ) ) = ( A .ih ( T ` B ) ) ) |
| 10 | oveq2 | |- ( y = B -> ( ( T ` A ) .ih y ) = ( ( T ` A ) .ih B ) ) |
|
| 11 | 9 10 | eqeq12d | |- ( y = B -> ( ( A .ih ( T ` y ) ) = ( ( T ` A ) .ih y ) <-> ( A .ih ( T ` B ) ) = ( ( T ` A ) .ih B ) ) ) |
| 12 | 7 11 | rspc2v | |- ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( T ` x ) .ih y ) -> ( A .ih ( T ` B ) ) = ( ( T ` A ) .ih B ) ) ) |
| 13 | 12 | 3adant1 | |- ( ( T e. HrmOp /\ A e. ~H /\ B e. ~H ) -> ( A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( T ` x ) .ih y ) -> ( A .ih ( T ` B ) ) = ( ( T ` A ) .ih B ) ) ) |
| 14 | 3 13 | mpd | |- ( ( T e. HrmOp /\ A e. ~H /\ B e. ~H ) -> ( A .ih ( T ` B ) ) = ( ( T ` A ) .ih B ) ) |