This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for Hilbert space operator difference. (Interestingly, the reverse distributive law hocsubdiri does not require linearity.) (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hoddi.1 | |- R e. LinOp |
|
| hoddi.2 | |- S : ~H --> ~H |
||
| hoddi.3 | |- T : ~H --> ~H |
||
| Assertion | hoddii | |- ( R o. ( S -op T ) ) = ( ( R o. S ) -op ( R o. T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoddi.1 | |- R e. LinOp |
|
| 2 | hoddi.2 | |- S : ~H --> ~H |
|
| 3 | hoddi.3 | |- T : ~H --> ~H |
|
| 4 | 2 | ffvelcdmi | |- ( x e. ~H -> ( S ` x ) e. ~H ) |
| 5 | 3 | ffvelcdmi | |- ( x e. ~H -> ( T ` x ) e. ~H ) |
| 6 | 1 | lnopsubi | |- ( ( ( S ` x ) e. ~H /\ ( T ` x ) e. ~H ) -> ( R ` ( ( S ` x ) -h ( T ` x ) ) ) = ( ( R ` ( S ` x ) ) -h ( R ` ( T ` x ) ) ) ) |
| 7 | 4 5 6 | syl2anc | |- ( x e. ~H -> ( R ` ( ( S ` x ) -h ( T ` x ) ) ) = ( ( R ` ( S ` x ) ) -h ( R ` ( T ` x ) ) ) ) |
| 8 | hodval | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( S -op T ) ` x ) = ( ( S ` x ) -h ( T ` x ) ) ) |
|
| 9 | 2 3 8 | mp3an12 | |- ( x e. ~H -> ( ( S -op T ) ` x ) = ( ( S ` x ) -h ( T ` x ) ) ) |
| 10 | 9 | fveq2d | |- ( x e. ~H -> ( R ` ( ( S -op T ) ` x ) ) = ( R ` ( ( S ` x ) -h ( T ` x ) ) ) ) |
| 11 | 1 | lnopfi | |- R : ~H --> ~H |
| 12 | 11 2 | hocoi | |- ( x e. ~H -> ( ( R o. S ) ` x ) = ( R ` ( S ` x ) ) ) |
| 13 | 11 3 | hocoi | |- ( x e. ~H -> ( ( R o. T ) ` x ) = ( R ` ( T ` x ) ) ) |
| 14 | 12 13 | oveq12d | |- ( x e. ~H -> ( ( ( R o. S ) ` x ) -h ( ( R o. T ) ` x ) ) = ( ( R ` ( S ` x ) ) -h ( R ` ( T ` x ) ) ) ) |
| 15 | 7 10 14 | 3eqtr4d | |- ( x e. ~H -> ( R ` ( ( S -op T ) ` x ) ) = ( ( ( R o. S ) ` x ) -h ( ( R o. T ) ` x ) ) ) |
| 16 | 2 3 | hosubcli | |- ( S -op T ) : ~H --> ~H |
| 17 | 11 16 | hocoi | |- ( x e. ~H -> ( ( R o. ( S -op T ) ) ` x ) = ( R ` ( ( S -op T ) ` x ) ) ) |
| 18 | 11 2 | hocofi | |- ( R o. S ) : ~H --> ~H |
| 19 | 11 3 | hocofi | |- ( R o. T ) : ~H --> ~H |
| 20 | hodval | |- ( ( ( R o. S ) : ~H --> ~H /\ ( R o. T ) : ~H --> ~H /\ x e. ~H ) -> ( ( ( R o. S ) -op ( R o. T ) ) ` x ) = ( ( ( R o. S ) ` x ) -h ( ( R o. T ) ` x ) ) ) |
|
| 21 | 18 19 20 | mp3an12 | |- ( x e. ~H -> ( ( ( R o. S ) -op ( R o. T ) ) ` x ) = ( ( ( R o. S ) ` x ) -h ( ( R o. T ) ` x ) ) ) |
| 22 | 15 17 21 | 3eqtr4d | |- ( x e. ~H -> ( ( R o. ( S -op T ) ) ` x ) = ( ( ( R o. S ) -op ( R o. T ) ) ` x ) ) |
| 23 | 22 | rgen | |- A. x e. ~H ( ( R o. ( S -op T ) ) ` x ) = ( ( ( R o. S ) -op ( R o. T ) ) ` x ) |
| 24 | 11 16 | hocofi | |- ( R o. ( S -op T ) ) : ~H --> ~H |
| 25 | 18 19 | hosubcli | |- ( ( R o. S ) -op ( R o. T ) ) : ~H --> ~H |
| 26 | 24 25 | hoeqi | |- ( A. x e. ~H ( ( R o. ( S -op T ) ) ` x ) = ( ( ( R o. S ) -op ( R o. T ) ) ` x ) <-> ( R o. ( S -op T ) ) = ( ( R o. S ) -op ( R o. T ) ) ) |
| 27 | 23 26 | mpbi | |- ( R o. ( S -op T ) ) = ( ( R o. S ) -op ( R o. T ) ) |