This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property defining a Hermitian Hilbert space operator. (Contributed by NM, 18-Jan-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elhmop | |- ( T e. HrmOp <-> ( T : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( T ` x ) .ih y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 | |- ( t = T -> ( t ` y ) = ( T ` y ) ) |
|
| 2 | 1 | oveq2d | |- ( t = T -> ( x .ih ( t ` y ) ) = ( x .ih ( T ` y ) ) ) |
| 3 | fveq1 | |- ( t = T -> ( t ` x ) = ( T ` x ) ) |
|
| 4 | 3 | oveq1d | |- ( t = T -> ( ( t ` x ) .ih y ) = ( ( T ` x ) .ih y ) ) |
| 5 | 2 4 | eqeq12d | |- ( t = T -> ( ( x .ih ( t ` y ) ) = ( ( t ` x ) .ih y ) <-> ( x .ih ( T ` y ) ) = ( ( T ` x ) .ih y ) ) ) |
| 6 | 5 | 2ralbidv | |- ( t = T -> ( A. x e. ~H A. y e. ~H ( x .ih ( t ` y ) ) = ( ( t ` x ) .ih y ) <-> A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( T ` x ) .ih y ) ) ) |
| 7 | df-hmop | |- HrmOp = { t e. ( ~H ^m ~H ) | A. x e. ~H A. y e. ~H ( x .ih ( t ` y ) ) = ( ( t ` x ) .ih y ) } |
|
| 8 | 6 7 | elrab2 | |- ( T e. HrmOp <-> ( T e. ( ~H ^m ~H ) /\ A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( T ` x ) .ih y ) ) ) |
| 9 | ax-hilex | |- ~H e. _V |
|
| 10 | 9 9 | elmap | |- ( T e. ( ~H ^m ~H ) <-> T : ~H --> ~H ) |
| 11 | 10 | anbi1i | |- ( ( T e. ( ~H ^m ~H ) /\ A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( T ` x ) .ih y ) ) <-> ( T : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( T ` x ) .ih y ) ) ) |
| 12 | 8 11 | bitri | |- ( T e. HrmOp <-> ( T : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( T ` x ) .ih y ) ) ) |