This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Hermitian operator is self-adjoint. (Contributed by NM, 24-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmopadj | |- ( T e. HrmOp -> ( adjh ` T ) = T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmopf | |- ( T e. HrmOp -> T : ~H --> ~H ) |
|
| 2 | hmop | |- ( ( T e. HrmOp /\ x e. ~H /\ y e. ~H ) -> ( x .ih ( T ` y ) ) = ( ( T ` x ) .ih y ) ) |
|
| 3 | 2 | eqcomd | |- ( ( T e. HrmOp /\ x e. ~H /\ y e. ~H ) -> ( ( T ` x ) .ih y ) = ( x .ih ( T ` y ) ) ) |
| 4 | 3 | 3expib | |- ( T e. HrmOp -> ( ( x e. ~H /\ y e. ~H ) -> ( ( T ` x ) .ih y ) = ( x .ih ( T ` y ) ) ) ) |
| 5 | 4 | ralrimivv | |- ( T e. HrmOp -> A. x e. ~H A. y e. ~H ( ( T ` x ) .ih y ) = ( x .ih ( T ` y ) ) ) |
| 6 | adjeq | |- ( ( T : ~H --> ~H /\ T : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( ( T ` x ) .ih y ) = ( x .ih ( T ` y ) ) ) -> ( adjh ` T ) = T ) |
|
| 7 | 1 1 5 6 | syl3anc | |- ( T e. HrmOp -> ( adjh ` T ) = T ) |