This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of Gleason p. 133. (Contributed by NM, 29-Jul-1999) (Proof shortened by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cjcj | |- ( A e. CC -> ( * ` ( * ` A ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjcl | |- ( A e. CC -> ( * ` A ) e. CC ) |
|
| 2 | recj | |- ( ( * ` A ) e. CC -> ( Re ` ( * ` ( * ` A ) ) ) = ( Re ` ( * ` A ) ) ) |
|
| 3 | 1 2 | syl | |- ( A e. CC -> ( Re ` ( * ` ( * ` A ) ) ) = ( Re ` ( * ` A ) ) ) |
| 4 | recj | |- ( A e. CC -> ( Re ` ( * ` A ) ) = ( Re ` A ) ) |
|
| 5 | 3 4 | eqtrd | |- ( A e. CC -> ( Re ` ( * ` ( * ` A ) ) ) = ( Re ` A ) ) |
| 6 | imcj | |- ( ( * ` A ) e. CC -> ( Im ` ( * ` ( * ` A ) ) ) = -u ( Im ` ( * ` A ) ) ) |
|
| 7 | 1 6 | syl | |- ( A e. CC -> ( Im ` ( * ` ( * ` A ) ) ) = -u ( Im ` ( * ` A ) ) ) |
| 8 | imcj | |- ( A e. CC -> ( Im ` ( * ` A ) ) = -u ( Im ` A ) ) |
|
| 9 | 8 | negeqd | |- ( A e. CC -> -u ( Im ` ( * ` A ) ) = -u -u ( Im ` A ) ) |
| 10 | imcl | |- ( A e. CC -> ( Im ` A ) e. RR ) |
|
| 11 | 10 | recnd | |- ( A e. CC -> ( Im ` A ) e. CC ) |
| 12 | 11 | negnegd | |- ( A e. CC -> -u -u ( Im ` A ) = ( Im ` A ) ) |
| 13 | 9 12 | eqtrd | |- ( A e. CC -> -u ( Im ` ( * ` A ) ) = ( Im ` A ) ) |
| 14 | 7 13 | eqtrd | |- ( A e. CC -> ( Im ` ( * ` ( * ` A ) ) ) = ( Im ` A ) ) |
| 15 | 14 | oveq2d | |- ( A e. CC -> ( _i x. ( Im ` ( * ` ( * ` A ) ) ) ) = ( _i x. ( Im ` A ) ) ) |
| 16 | 5 15 | oveq12d | |- ( A e. CC -> ( ( Re ` ( * ` ( * ` A ) ) ) + ( _i x. ( Im ` ( * ` ( * ` A ) ) ) ) ) = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
| 17 | cjcl | |- ( ( * ` A ) e. CC -> ( * ` ( * ` A ) ) e. CC ) |
|
| 18 | replim | |- ( ( * ` ( * ` A ) ) e. CC -> ( * ` ( * ` A ) ) = ( ( Re ` ( * ` ( * ` A ) ) ) + ( _i x. ( Im ` ( * ` ( * ` A ) ) ) ) ) ) |
|
| 19 | 1 17 18 | 3syl | |- ( A e. CC -> ( * ` ( * ` A ) ) = ( ( Re ` ( * ` ( * ` A ) ) ) + ( _i x. ( Im ` ( * ` ( * ` A ) ) ) ) ) ) |
| 20 | replim | |- ( A e. CC -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
|
| 21 | 16 19 20 | 3eqtr4d | |- ( A e. CC -> ( * ` ( * ` A ) ) = A ) |