This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two vectors whose inner product is always equal are equal. (Contributed by NM, 16-Nov-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hial2eq | |- ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H ( A .ih x ) = ( B .ih x ) <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvsubcl | |- ( ( A e. ~H /\ B e. ~H ) -> ( A -h B ) e. ~H ) |
|
| 2 | oveq2 | |- ( x = ( A -h B ) -> ( A .ih x ) = ( A .ih ( A -h B ) ) ) |
|
| 3 | oveq2 | |- ( x = ( A -h B ) -> ( B .ih x ) = ( B .ih ( A -h B ) ) ) |
|
| 4 | 2 3 | eqeq12d | |- ( x = ( A -h B ) -> ( ( A .ih x ) = ( B .ih x ) <-> ( A .ih ( A -h B ) ) = ( B .ih ( A -h B ) ) ) ) |
| 5 | 4 | rspcv | |- ( ( A -h B ) e. ~H -> ( A. x e. ~H ( A .ih x ) = ( B .ih x ) -> ( A .ih ( A -h B ) ) = ( B .ih ( A -h B ) ) ) ) |
| 6 | 1 5 | syl | |- ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H ( A .ih x ) = ( B .ih x ) -> ( A .ih ( A -h B ) ) = ( B .ih ( A -h B ) ) ) ) |
| 7 | hi2eq | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih ( A -h B ) ) = ( B .ih ( A -h B ) ) <-> A = B ) ) |
|
| 8 | 6 7 | sylibd | |- ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H ( A .ih x ) = ( B .ih x ) -> A = B ) ) |
| 9 | oveq1 | |- ( A = B -> ( A .ih x ) = ( B .ih x ) ) |
|
| 10 | 9 | ralrimivw | |- ( A = B -> A. x e. ~H ( A .ih x ) = ( B .ih x ) ) |
| 11 | 8 10 | impbid1 | |- ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H ( A .ih x ) = ( B .ih x ) <-> A = B ) ) |