This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normed complex vector space is a subspace of itself. (Contributed by NM, 8-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sspid.h | |- H = ( SubSp ` U ) |
|
| Assertion | sspid | |- ( U e. NrmCVec -> U e. H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspid.h | |- H = ( SubSp ` U ) |
|
| 2 | ssid | |- ( +v ` U ) C_ ( +v ` U ) |
|
| 3 | ssid | |- ( .sOLD ` U ) C_ ( .sOLD ` U ) |
|
| 4 | ssid | |- ( normCV ` U ) C_ ( normCV ` U ) |
|
| 5 | 2 3 4 | 3pm3.2i | |- ( ( +v ` U ) C_ ( +v ` U ) /\ ( .sOLD ` U ) C_ ( .sOLD ` U ) /\ ( normCV ` U ) C_ ( normCV ` U ) ) |
| 6 | 5 | jctr | |- ( U e. NrmCVec -> ( U e. NrmCVec /\ ( ( +v ` U ) C_ ( +v ` U ) /\ ( .sOLD ` U ) C_ ( .sOLD ` U ) /\ ( normCV ` U ) C_ ( normCV ` U ) ) ) ) |
| 7 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 8 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 9 | eqid | |- ( normCV ` U ) = ( normCV ` U ) |
|
| 10 | 7 7 8 8 9 9 1 | isssp | |- ( U e. NrmCVec -> ( U e. H <-> ( U e. NrmCVec /\ ( ( +v ` U ) C_ ( +v ` U ) /\ ( .sOLD ` U ) C_ ( .sOLD ` U ) /\ ( normCV ` U ) C_ ( normCV ` U ) ) ) ) ) |
| 11 | 6 10 | mpbird | |- ( U e. NrmCVec -> U e. H ) |