This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operator norm function. (Contributed by NM, 6-Nov-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoofval.1 | |- X = ( BaseSet ` U ) |
|
| nmoofval.2 | |- Y = ( BaseSet ` W ) |
||
| nmoofval.3 | |- L = ( normCV ` U ) |
||
| nmoofval.4 | |- M = ( normCV ` W ) |
||
| nmoofval.6 | |- N = ( U normOpOLD W ) |
||
| Assertion | nmoofval | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> N = ( t e. ( Y ^m X ) |-> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } , RR* , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoofval.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nmoofval.2 | |- Y = ( BaseSet ` W ) |
|
| 3 | nmoofval.3 | |- L = ( normCV ` U ) |
|
| 4 | nmoofval.4 | |- M = ( normCV ` W ) |
|
| 5 | nmoofval.6 | |- N = ( U normOpOLD W ) |
|
| 6 | fveq2 | |- ( u = U -> ( BaseSet ` u ) = ( BaseSet ` U ) ) |
|
| 7 | 6 1 | eqtr4di | |- ( u = U -> ( BaseSet ` u ) = X ) |
| 8 | 7 | oveq2d | |- ( u = U -> ( ( BaseSet ` w ) ^m ( BaseSet ` u ) ) = ( ( BaseSet ` w ) ^m X ) ) |
| 9 | fveq2 | |- ( u = U -> ( normCV ` u ) = ( normCV ` U ) ) |
|
| 10 | 9 3 | eqtr4di | |- ( u = U -> ( normCV ` u ) = L ) |
| 11 | 10 | fveq1d | |- ( u = U -> ( ( normCV ` u ) ` z ) = ( L ` z ) ) |
| 12 | 11 | breq1d | |- ( u = U -> ( ( ( normCV ` u ) ` z ) <_ 1 <-> ( L ` z ) <_ 1 ) ) |
| 13 | 12 | anbi1d | |- ( u = U -> ( ( ( ( normCV ` u ) ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) <-> ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) ) ) |
| 14 | 7 13 | rexeqbidv | |- ( u = U -> ( E. z e. ( BaseSet ` u ) ( ( ( normCV ` u ) ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) <-> E. z e. X ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) ) ) |
| 15 | 14 | abbidv | |- ( u = U -> { x | E. z e. ( BaseSet ` u ) ( ( ( normCV ` u ) ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } = { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } ) |
| 16 | 15 | supeq1d | |- ( u = U -> sup ( { x | E. z e. ( BaseSet ` u ) ( ( ( normCV ` u ) ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } , RR* , < ) = sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } , RR* , < ) ) |
| 17 | 8 16 | mpteq12dv | |- ( u = U -> ( t e. ( ( BaseSet ` w ) ^m ( BaseSet ` u ) ) |-> sup ( { x | E. z e. ( BaseSet ` u ) ( ( ( normCV ` u ) ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } , RR* , < ) ) = ( t e. ( ( BaseSet ` w ) ^m X ) |-> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } , RR* , < ) ) ) |
| 18 | fveq2 | |- ( w = W -> ( BaseSet ` w ) = ( BaseSet ` W ) ) |
|
| 19 | 18 2 | eqtr4di | |- ( w = W -> ( BaseSet ` w ) = Y ) |
| 20 | 19 | oveq1d | |- ( w = W -> ( ( BaseSet ` w ) ^m X ) = ( Y ^m X ) ) |
| 21 | fveq2 | |- ( w = W -> ( normCV ` w ) = ( normCV ` W ) ) |
|
| 22 | 21 4 | eqtr4di | |- ( w = W -> ( normCV ` w ) = M ) |
| 23 | 22 | fveq1d | |- ( w = W -> ( ( normCV ` w ) ` ( t ` z ) ) = ( M ` ( t ` z ) ) ) |
| 24 | 23 | eqeq2d | |- ( w = W -> ( x = ( ( normCV ` w ) ` ( t ` z ) ) <-> x = ( M ` ( t ` z ) ) ) ) |
| 25 | 24 | anbi2d | |- ( w = W -> ( ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) <-> ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) ) ) |
| 26 | 25 | rexbidv | |- ( w = W -> ( E. z e. X ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) <-> E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) ) ) |
| 27 | 26 | abbidv | |- ( w = W -> { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } = { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } ) |
| 28 | 27 | supeq1d | |- ( w = W -> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } , RR* , < ) = sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } , RR* , < ) ) |
| 29 | 20 28 | mpteq12dv | |- ( w = W -> ( t e. ( ( BaseSet ` w ) ^m X ) |-> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } , RR* , < ) ) = ( t e. ( Y ^m X ) |-> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } , RR* , < ) ) ) |
| 30 | df-nmoo | |- normOpOLD = ( u e. NrmCVec , w e. NrmCVec |-> ( t e. ( ( BaseSet ` w ) ^m ( BaseSet ` u ) ) |-> sup ( { x | E. z e. ( BaseSet ` u ) ( ( ( normCV ` u ) ` z ) <_ 1 /\ x = ( ( normCV ` w ) ` ( t ` z ) ) ) } , RR* , < ) ) ) |
|
| 31 | ovex | |- ( Y ^m X ) e. _V |
|
| 32 | 31 | mptex | |- ( t e. ( Y ^m X ) |-> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } , RR* , < ) ) e. _V |
| 33 | 17 29 30 32 | ovmpo | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( U normOpOLD W ) = ( t e. ( Y ^m X ) |-> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } , RR* , < ) ) ) |
| 34 | 5 33 | eqtrid | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> N = ( t e. ( Y ^m X ) |-> sup ( { x | E. z e. X ( ( L ` z ) <_ 1 /\ x = ( M ` ( t ` z ) ) ) } , RR* , < ) ) ) |