This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the norm of a Hilbert space operator. (Contributed by NM, 18-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-nmop | |- normop = ( t e. ( ~H ^m ~H ) |-> sup ( { x | E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( normh ` ( t ` z ) ) ) } , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cnop | |- normop |
|
| 1 | vt | |- t |
|
| 2 | chba | |- ~H |
|
| 3 | cmap | |- ^m |
|
| 4 | 2 2 3 | co | |- ( ~H ^m ~H ) |
| 5 | vx | |- x |
|
| 6 | vz | |- z |
|
| 7 | cno | |- normh |
|
| 8 | 6 | cv | |- z |
| 9 | 8 7 | cfv | |- ( normh ` z ) |
| 10 | cle | |- <_ |
|
| 11 | c1 | |- 1 |
|
| 12 | 9 11 10 | wbr | |- ( normh ` z ) <_ 1 |
| 13 | 5 | cv | |- x |
| 14 | 1 | cv | |- t |
| 15 | 8 14 | cfv | |- ( t ` z ) |
| 16 | 15 7 | cfv | |- ( normh ` ( t ` z ) ) |
| 17 | 13 16 | wceq | |- x = ( normh ` ( t ` z ) ) |
| 18 | 12 17 | wa | |- ( ( normh ` z ) <_ 1 /\ x = ( normh ` ( t ` z ) ) ) |
| 19 | 18 6 2 | wrex | |- E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( normh ` ( t ` z ) ) ) |
| 20 | 19 5 | cab | |- { x | E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( normh ` ( t ` z ) ) ) } |
| 21 | cxr | |- RR* |
|
| 22 | clt | |- < |
|
| 23 | 20 21 22 | csup | |- sup ( { x | E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( normh ` ( t ` z ) ) ) } , RR* , < ) |
| 24 | 1 4 23 | cmpt | |- ( t e. ( ~H ^m ~H ) |-> sup ( { x | E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( normh ` ( t ` z ) ) ) } , RR* , < ) ) |
| 25 | 0 24 | wceq | |- normop = ( t e. ( ~H ^m ~H ) |-> sup ( { x | E. z e. ~H ( ( normh ` z ) <_ 1 /\ x = ( normh ` ( t ` z ) ) ) } , RR* , < ) ) |