This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of continuous operators on Hilbert space. For every "epsilon" ( y ) there is a "delta" ( z ) such that... (Contributed by NM, 28-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cnop | |- ContOp = { t e. ( ~H ^m ~H ) | A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccop | |- ContOp |
|
| 1 | vt | |- t |
|
| 2 | chba | |- ~H |
|
| 3 | cmap | |- ^m |
|
| 4 | 2 2 3 | co | |- ( ~H ^m ~H ) |
| 5 | vx | |- x |
|
| 6 | vy | |- y |
|
| 7 | crp | |- RR+ |
|
| 8 | vz | |- z |
|
| 9 | vw | |- w |
|
| 10 | cno | |- normh |
|
| 11 | 9 | cv | |- w |
| 12 | cmv | |- -h |
|
| 13 | 5 | cv | |- x |
| 14 | 11 13 12 | co | |- ( w -h x ) |
| 15 | 14 10 | cfv | |- ( normh ` ( w -h x ) ) |
| 16 | clt | |- < |
|
| 17 | 8 | cv | |- z |
| 18 | 15 17 16 | wbr | |- ( normh ` ( w -h x ) ) < z |
| 19 | 1 | cv | |- t |
| 20 | 11 19 | cfv | |- ( t ` w ) |
| 21 | 13 19 | cfv | |- ( t ` x ) |
| 22 | 20 21 12 | co | |- ( ( t ` w ) -h ( t ` x ) ) |
| 23 | 22 10 | cfv | |- ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) |
| 24 | 6 | cv | |- y |
| 25 | 23 24 16 | wbr | |- ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y |
| 26 | 18 25 | wi | |- ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) |
| 27 | 26 9 2 | wral | |- A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) |
| 28 | 27 8 7 | wrex | |- E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) |
| 29 | 28 6 7 | wral | |- A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) |
| 30 | 29 5 2 | wral | |- A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) |
| 31 | 30 1 4 | crab | |- { t e. ( ~H ^m ~H ) | A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) } |
| 32 | 0 31 | wceq | |- ContOp = { t e. ( ~H ^m ~H ) | A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) } |