This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of bounded linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bloval.3 | |- N = ( U normOpOLD W ) |
|
| bloval.4 | |- L = ( U LnOp W ) |
||
| bloval.5 | |- B = ( U BLnOp W ) |
||
| Assertion | bloval | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> B = { t e. L | ( N ` t ) < +oo } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bloval.3 | |- N = ( U normOpOLD W ) |
|
| 2 | bloval.4 | |- L = ( U LnOp W ) |
|
| 3 | bloval.5 | |- B = ( U BLnOp W ) |
|
| 4 | oveq1 | |- ( u = U -> ( u LnOp w ) = ( U LnOp w ) ) |
|
| 5 | oveq1 | |- ( u = U -> ( u normOpOLD w ) = ( U normOpOLD w ) ) |
|
| 6 | 5 | fveq1d | |- ( u = U -> ( ( u normOpOLD w ) ` t ) = ( ( U normOpOLD w ) ` t ) ) |
| 7 | 6 | breq1d | |- ( u = U -> ( ( ( u normOpOLD w ) ` t ) < +oo <-> ( ( U normOpOLD w ) ` t ) < +oo ) ) |
| 8 | 4 7 | rabeqbidv | |- ( u = U -> { t e. ( u LnOp w ) | ( ( u normOpOLD w ) ` t ) < +oo } = { t e. ( U LnOp w ) | ( ( U normOpOLD w ) ` t ) < +oo } ) |
| 9 | oveq2 | |- ( w = W -> ( U LnOp w ) = ( U LnOp W ) ) |
|
| 10 | 9 2 | eqtr4di | |- ( w = W -> ( U LnOp w ) = L ) |
| 11 | oveq2 | |- ( w = W -> ( U normOpOLD w ) = ( U normOpOLD W ) ) |
|
| 12 | 11 1 | eqtr4di | |- ( w = W -> ( U normOpOLD w ) = N ) |
| 13 | 12 | fveq1d | |- ( w = W -> ( ( U normOpOLD w ) ` t ) = ( N ` t ) ) |
| 14 | 13 | breq1d | |- ( w = W -> ( ( ( U normOpOLD w ) ` t ) < +oo <-> ( N ` t ) < +oo ) ) |
| 15 | 10 14 | rabeqbidv | |- ( w = W -> { t e. ( U LnOp w ) | ( ( U normOpOLD w ) ` t ) < +oo } = { t e. L | ( N ` t ) < +oo } ) |
| 16 | df-blo | |- BLnOp = ( u e. NrmCVec , w e. NrmCVec |-> { t e. ( u LnOp w ) | ( ( u normOpOLD w ) ` t ) < +oo } ) |
|
| 17 | 2 | ovexi | |- L e. _V |
| 18 | 17 | rabex | |- { t e. L | ( N ` t ) < +oo } e. _V |
| 19 | 8 15 16 18 | ovmpo | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( U BLnOp W ) = { t e. L | ( N ` t ) < +oo } ) |
| 20 | 3 19 | eqtrid | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> B = { t e. L | ( N ` t ) < +oo } ) |