This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of Hilbert space zero operator. (Contributed by NM, 7-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df0op2 | |- 0hop = ( ~H X. 0H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ho0f | |- 0hop : ~H --> ~H |
|
| 2 | ffn | |- ( 0hop : ~H --> ~H -> 0hop Fn ~H ) |
|
| 3 | 1 2 | ax-mp | |- 0hop Fn ~H |
| 4 | ho0val | |- ( x e. ~H -> ( 0hop ` x ) = 0h ) |
|
| 5 | 4 | rgen | |- A. x e. ~H ( 0hop ` x ) = 0h |
| 6 | fconstfv | |- ( 0hop : ~H --> { 0h } <-> ( 0hop Fn ~H /\ A. x e. ~H ( 0hop ` x ) = 0h ) ) |
|
| 7 | 3 5 6 | mpbir2an | |- 0hop : ~H --> { 0h } |
| 8 | ax-hv0cl | |- 0h e. ~H |
|
| 9 | 8 | elexi | |- 0h e. _V |
| 10 | 9 | fconst2 | |- ( 0hop : ~H --> { 0h } <-> 0hop = ( ~H X. { 0h } ) ) |
| 11 | 7 10 | mpbi | |- 0hop = ( ~H X. { 0h } ) |
| 12 | df-ch0 | |- 0H = { 0h } |
|
| 13 | 12 | xpeq2i | |- ( ~H X. 0H ) = ( ~H X. { 0h } ) |
| 14 | 11 13 | eqtr4i | |- 0hop = ( ~H X. 0H ) |