This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 13-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmscl.b | |- B = ( Base ` G ) |
|
| tsmscl.1 | |- ( ph -> G e. CMnd ) |
||
| tsmscl.2 | |- ( ph -> G e. TopSp ) |
||
| tsmscl.a | |- ( ph -> A e. V ) |
||
| tsmscl.f | |- ( ph -> F : A --> B ) |
||
| haustsms.j | |- J = ( TopOpen ` G ) |
||
| haustsms.h | |- ( ph -> J e. Haus ) |
||
| Assertion | haustsms2 | |- ( ph -> ( X e. ( G tsums F ) -> ( G tsums F ) = { X } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmscl.b | |- B = ( Base ` G ) |
|
| 2 | tsmscl.1 | |- ( ph -> G e. CMnd ) |
|
| 3 | tsmscl.2 | |- ( ph -> G e. TopSp ) |
|
| 4 | tsmscl.a | |- ( ph -> A e. V ) |
|
| 5 | tsmscl.f | |- ( ph -> F : A --> B ) |
|
| 6 | haustsms.j | |- J = ( TopOpen ` G ) |
|
| 7 | haustsms.h | |- ( ph -> J e. Haus ) |
|
| 8 | simpr | |- ( ( ph /\ X e. ( G tsums F ) ) -> X e. ( G tsums F ) ) |
|
| 9 | 1 2 3 4 5 6 7 | haustsms | |- ( ph -> E* x x e. ( G tsums F ) ) |
| 10 | 9 | adantr | |- ( ( ph /\ X e. ( G tsums F ) ) -> E* x x e. ( G tsums F ) ) |
| 11 | eleq1 | |- ( x = X -> ( x e. ( G tsums F ) <-> X e. ( G tsums F ) ) ) |
|
| 12 | 11 | moi2 | |- ( ( ( X e. ( G tsums F ) /\ E* x x e. ( G tsums F ) ) /\ ( x e. ( G tsums F ) /\ X e. ( G tsums F ) ) ) -> x = X ) |
| 13 | 12 | ancom2s | |- ( ( ( X e. ( G tsums F ) /\ E* x x e. ( G tsums F ) ) /\ ( X e. ( G tsums F ) /\ x e. ( G tsums F ) ) ) -> x = X ) |
| 14 | 13 | expr | |- ( ( ( X e. ( G tsums F ) /\ E* x x e. ( G tsums F ) ) /\ X e. ( G tsums F ) ) -> ( x e. ( G tsums F ) -> x = X ) ) |
| 15 | 8 10 8 14 | syl21anc | |- ( ( ph /\ X e. ( G tsums F ) ) -> ( x e. ( G tsums F ) -> x = X ) ) |
| 16 | velsn | |- ( x e. { X } <-> x = X ) |
|
| 17 | 15 16 | imbitrrdi | |- ( ( ph /\ X e. ( G tsums F ) ) -> ( x e. ( G tsums F ) -> x e. { X } ) ) |
| 18 | 17 | ssrdv | |- ( ( ph /\ X e. ( G tsums F ) ) -> ( G tsums F ) C_ { X } ) |
| 19 | snssi | |- ( X e. ( G tsums F ) -> { X } C_ ( G tsums F ) ) |
|
| 20 | 19 | adantl | |- ( ( ph /\ X e. ( G tsums F ) ) -> { X } C_ ( G tsums F ) ) |
| 21 | 18 20 | eqssd | |- ( ( ph /\ X e. ( G tsums F ) ) -> ( G tsums F ) = { X } ) |
| 22 | 21 | ex | |- ( ph -> ( X e. ( G tsums F ) -> ( G tsums F ) = { X } ) ) |