This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two Hilbert lattice elements in a proper subset relationship imply the existence of an atom less than or equal to one but not the other. (Contributed by NM, 10-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chpssat.1 | |- A e. CH |
|
| chpssat.2 | |- B e. CH |
||
| Assertion | chpssati | |- ( A C. B -> E. x e. HAtoms ( x C_ B /\ -. x C_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chpssat.1 | |- A e. CH |
|
| 2 | chpssat.2 | |- B e. CH |
|
| 3 | dfpss3 | |- ( A C. B <-> ( A C_ B /\ -. B C_ A ) ) |
|
| 4 | iman | |- ( ( x C_ B -> x C_ A ) <-> -. ( x C_ B /\ -. x C_ A ) ) |
|
| 5 | 4 | ralbii | |- ( A. x e. HAtoms ( x C_ B -> x C_ A ) <-> A. x e. HAtoms -. ( x C_ B /\ -. x C_ A ) ) |
| 6 | ss2rab | |- ( { x e. HAtoms | x C_ B } C_ { x e. HAtoms | x C_ A } <-> A. x e. HAtoms ( x C_ B -> x C_ A ) ) |
|
| 7 | ssrab2 | |- { x e. HAtoms | x C_ B } C_ HAtoms |
|
| 8 | atssch | |- HAtoms C_ CH |
|
| 9 | 7 8 | sstri | |- { x e. HAtoms | x C_ B } C_ CH |
| 10 | ssrab2 | |- { x e. HAtoms | x C_ A } C_ HAtoms |
|
| 11 | 10 8 | sstri | |- { x e. HAtoms | x C_ A } C_ CH |
| 12 | chsupss | |- ( ( { x e. HAtoms | x C_ B } C_ CH /\ { x e. HAtoms | x C_ A } C_ CH ) -> ( { x e. HAtoms | x C_ B } C_ { x e. HAtoms | x C_ A } -> ( \/H ` { x e. HAtoms | x C_ B } ) C_ ( \/H ` { x e. HAtoms | x C_ A } ) ) ) |
|
| 13 | 9 11 12 | mp2an | |- ( { x e. HAtoms | x C_ B } C_ { x e. HAtoms | x C_ A } -> ( \/H ` { x e. HAtoms | x C_ B } ) C_ ( \/H ` { x e. HAtoms | x C_ A } ) ) |
| 14 | 2 | hatomistici | |- B = ( \/H ` { x e. HAtoms | x C_ B } ) |
| 15 | 1 | hatomistici | |- A = ( \/H ` { x e. HAtoms | x C_ A } ) |
| 16 | 13 14 15 | 3sstr4g | |- ( { x e. HAtoms | x C_ B } C_ { x e. HAtoms | x C_ A } -> B C_ A ) |
| 17 | 6 16 | sylbir | |- ( A. x e. HAtoms ( x C_ B -> x C_ A ) -> B C_ A ) |
| 18 | 5 17 | sylbir | |- ( A. x e. HAtoms -. ( x C_ B /\ -. x C_ A ) -> B C_ A ) |
| 19 | 18 | con3i | |- ( -. B C_ A -> -. A. x e. HAtoms -. ( x C_ B /\ -. x C_ A ) ) |
| 20 | dfrex2 | |- ( E. x e. HAtoms ( x C_ B /\ -. x C_ A ) <-> -. A. x e. HAtoms -. ( x C_ B /\ -. x C_ A ) ) |
|
| 21 | 19 20 | sylibr | |- ( -. B C_ A -> E. x e. HAtoms ( x C_ B /\ -. x C_ A ) ) |
| 22 | 3 21 | simplbiim | |- ( A C. B -> E. x e. HAtoms ( x C_ B /\ -. x C_ A ) ) |