This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of an unordered pair is 2 if and only if its elements are different sets. (Contributed by Alexander van der Vekens, 17-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashprb | |- ( ( M e. _V /\ N e. _V /\ M =/= N ) <-> ( # ` { M , N } ) = 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashprg | |- ( ( M e. _V /\ N e. _V ) -> ( M =/= N <-> ( # ` { M , N } ) = 2 ) ) |
|
| 2 | 1 | biimp3a | |- ( ( M e. _V /\ N e. _V /\ M =/= N ) -> ( # ` { M , N } ) = 2 ) |
| 3 | elprchashprn2 | |- ( -. M e. _V -> -. ( # ` { M , N } ) = 2 ) |
|
| 4 | pm2.21 | |- ( -. ( # ` { M , N } ) = 2 -> ( ( # ` { M , N } ) = 2 -> ( M e. _V /\ N e. _V /\ M =/= N ) ) ) |
|
| 5 | 3 4 | syl | |- ( -. M e. _V -> ( ( # ` { M , N } ) = 2 -> ( M e. _V /\ N e. _V /\ M =/= N ) ) ) |
| 6 | elprchashprn2 | |- ( -. N e. _V -> -. ( # ` { N , M } ) = 2 ) |
|
| 7 | prcom | |- { N , M } = { M , N } |
|
| 8 | 7 | fveq2i | |- ( # ` { N , M } ) = ( # ` { M , N } ) |
| 9 | 8 | eqeq1i | |- ( ( # ` { N , M } ) = 2 <-> ( # ` { M , N } ) = 2 ) |
| 10 | 9 4 | sylnbi | |- ( -. ( # ` { N , M } ) = 2 -> ( ( # ` { M , N } ) = 2 -> ( M e. _V /\ N e. _V /\ M =/= N ) ) ) |
| 11 | 6 10 | syl | |- ( -. N e. _V -> ( ( # ` { M , N } ) = 2 -> ( M e. _V /\ N e. _V /\ M =/= N ) ) ) |
| 12 | simpll | |- ( ( ( M e. _V /\ N e. _V ) /\ ( # ` { M , N } ) = 2 ) -> M e. _V ) |
|
| 13 | simplr | |- ( ( ( M e. _V /\ N e. _V ) /\ ( # ` { M , N } ) = 2 ) -> N e. _V ) |
|
| 14 | 1 | biimpar | |- ( ( ( M e. _V /\ N e. _V ) /\ ( # ` { M , N } ) = 2 ) -> M =/= N ) |
| 15 | 12 13 14 | 3jca | |- ( ( ( M e. _V /\ N e. _V ) /\ ( # ` { M , N } ) = 2 ) -> ( M e. _V /\ N e. _V /\ M =/= N ) ) |
| 16 | 15 | ex | |- ( ( M e. _V /\ N e. _V ) -> ( ( # ` { M , N } ) = 2 -> ( M e. _V /\ N e. _V /\ M =/= N ) ) ) |
| 17 | 5 11 16 | ecase | |- ( ( # ` { M , N } ) = 2 -> ( M e. _V /\ N e. _V /\ M =/= N ) ) |
| 18 | 2 17 | impbii | |- ( ( M e. _V /\ N e. _V /\ M =/= N ) <-> ( # ` { M , N } ) = 2 ) |