This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The elements of an unordered pair of size 2 are different sets. (Contributed by AV, 27-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hashprdifel.s | |- S = { A , B } |
|
| Assertion | hashprdifel | |- ( ( # ` S ) = 2 -> ( A e. S /\ B e. S /\ A =/= B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashprdifel.s | |- S = { A , B } |
|
| 2 | 1 | fveq2i | |- ( # ` S ) = ( # ` { A , B } ) |
| 3 | 2 | eqeq1i | |- ( ( # ` S ) = 2 <-> ( # ` { A , B } ) = 2 ) |
| 4 | hashprb | |- ( ( A e. _V /\ B e. _V /\ A =/= B ) <-> ( # ` { A , B } ) = 2 ) |
|
| 5 | 3 4 | bitr4i | |- ( ( # ` S ) = 2 <-> ( A e. _V /\ B e. _V /\ A =/= B ) ) |
| 6 | prid1g | |- ( A e. _V -> A e. { A , B } ) |
|
| 7 | 6 | 3ad2ant1 | |- ( ( A e. _V /\ B e. _V /\ A =/= B ) -> A e. { A , B } ) |
| 8 | 7 1 | eleqtrrdi | |- ( ( A e. _V /\ B e. _V /\ A =/= B ) -> A e. S ) |
| 9 | prid2g | |- ( B e. _V -> B e. { A , B } ) |
|
| 10 | 9 | 3ad2ant2 | |- ( ( A e. _V /\ B e. _V /\ A =/= B ) -> B e. { A , B } ) |
| 11 | 10 1 | eleqtrrdi | |- ( ( A e. _V /\ B e. _V /\ A =/= B ) -> B e. S ) |
| 12 | simp3 | |- ( ( A e. _V /\ B e. _V /\ A =/= B ) -> A =/= B ) |
|
| 13 | 8 11 12 | 3jca | |- ( ( A e. _V /\ B e. _V /\ A =/= B ) -> ( A e. S /\ B e. S /\ A =/= B ) ) |
| 14 | 5 13 | sylbi | |- ( ( # ` S ) = 2 -> ( A e. S /\ B e. S /\ A =/= B ) ) |