This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of a finite set of sequential integers. (See om2uz0i for a description of the hypothesis.) (Contributed by NM, 7-Nov-2008) (Revised by Mario Carneiro, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fzennn.1 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
|
| Assertion | cardfz | |- ( N e. NN0 -> ( card ` ( 1 ... N ) ) = ( `' G ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzennn.1 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
|
| 2 | 1 | fzennn | |- ( N e. NN0 -> ( 1 ... N ) ~~ ( `' G ` N ) ) |
| 3 | carden2b | |- ( ( 1 ... N ) ~~ ( `' G ` N ) -> ( card ` ( 1 ... N ) ) = ( card ` ( `' G ` N ) ) ) |
|
| 4 | 2 3 | syl | |- ( N e. NN0 -> ( card ` ( 1 ... N ) ) = ( card ` ( `' G ` N ) ) ) |
| 5 | 0z | |- 0 e. ZZ |
|
| 6 | 5 1 | om2uzf1oi | |- G : _om -1-1-onto-> ( ZZ>= ` 0 ) |
| 7 | elnn0uz | |- ( N e. NN0 <-> N e. ( ZZ>= ` 0 ) ) |
|
| 8 | 7 | biimpi | |- ( N e. NN0 -> N e. ( ZZ>= ` 0 ) ) |
| 9 | f1ocnvdm | |- ( ( G : _om -1-1-onto-> ( ZZ>= ` 0 ) /\ N e. ( ZZ>= ` 0 ) ) -> ( `' G ` N ) e. _om ) |
|
| 10 | 6 8 9 | sylancr | |- ( N e. NN0 -> ( `' G ` N ) e. _om ) |
| 11 | cardnn | |- ( ( `' G ` N ) e. _om -> ( card ` ( `' G ` N ) ) = ( `' G ` N ) ) |
|
| 12 | 10 11 | syl | |- ( N e. NN0 -> ( card ` ( `' G ` N ) ) = ( `' G ` N ) ) |
| 13 | 4 12 | eqtrd | |- ( N e. NN0 -> ( card ` ( 1 ... N ) ) = ( `' G ` N ) ) |