This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the domain of a class which contains two ordered pairs with different first components is greater than or equal to 2. (Contributed by AV, 12-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hashdmpropge2.a | |- ( ph -> A e. V ) |
|
| hashdmpropge2.b | |- ( ph -> B e. W ) |
||
| hashdmpropge2.c | |- ( ph -> C e. X ) |
||
| hashdmpropge2.d | |- ( ph -> D e. Y ) |
||
| hashdmpropge2.f | |- ( ph -> F e. Z ) |
||
| hashdmpropge2.n | |- ( ph -> A =/= B ) |
||
| hashdmpropge2.s | |- ( ph -> { <. A , C >. , <. B , D >. } C_ F ) |
||
| Assertion | hashdmpropge2 | |- ( ph -> 2 <_ ( # ` dom F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashdmpropge2.a | |- ( ph -> A e. V ) |
|
| 2 | hashdmpropge2.b | |- ( ph -> B e. W ) |
|
| 3 | hashdmpropge2.c | |- ( ph -> C e. X ) |
|
| 4 | hashdmpropge2.d | |- ( ph -> D e. Y ) |
|
| 5 | hashdmpropge2.f | |- ( ph -> F e. Z ) |
|
| 6 | hashdmpropge2.n | |- ( ph -> A =/= B ) |
|
| 7 | hashdmpropge2.s | |- ( ph -> { <. A , C >. , <. B , D >. } C_ F ) |
|
| 8 | 5 | dmexd | |- ( ph -> dom F e. _V ) |
| 9 | dmpropg | |- ( ( C e. X /\ D e. Y ) -> dom { <. A , C >. , <. B , D >. } = { A , B } ) |
|
| 10 | 3 4 9 | syl2anc | |- ( ph -> dom { <. A , C >. , <. B , D >. } = { A , B } ) |
| 11 | dmss | |- ( { <. A , C >. , <. B , D >. } C_ F -> dom { <. A , C >. , <. B , D >. } C_ dom F ) |
|
| 12 | 7 11 | syl | |- ( ph -> dom { <. A , C >. , <. B , D >. } C_ dom F ) |
| 13 | 10 12 | eqsstrrd | |- ( ph -> { A , B } C_ dom F ) |
| 14 | prssg | |- ( ( A e. V /\ B e. W ) -> ( ( A e. dom F /\ B e. dom F ) <-> { A , B } C_ dom F ) ) |
|
| 15 | 1 2 14 | syl2anc | |- ( ph -> ( ( A e. dom F /\ B e. dom F ) <-> { A , B } C_ dom F ) ) |
| 16 | neeq1 | |- ( a = A -> ( a =/= b <-> A =/= b ) ) |
|
| 17 | neeq2 | |- ( b = B -> ( A =/= b <-> A =/= B ) ) |
|
| 18 | 16 17 | rspc2ev | |- ( ( A e. dom F /\ B e. dom F /\ A =/= B ) -> E. a e. dom F E. b e. dom F a =/= b ) |
| 19 | 18 | 3expa | |- ( ( ( A e. dom F /\ B e. dom F ) /\ A =/= B ) -> E. a e. dom F E. b e. dom F a =/= b ) |
| 20 | 19 | expcom | |- ( A =/= B -> ( ( A e. dom F /\ B e. dom F ) -> E. a e. dom F E. b e. dom F a =/= b ) ) |
| 21 | 6 20 | syl | |- ( ph -> ( ( A e. dom F /\ B e. dom F ) -> E. a e. dom F E. b e. dom F a =/= b ) ) |
| 22 | 15 21 | sylbird | |- ( ph -> ( { A , B } C_ dom F -> E. a e. dom F E. b e. dom F a =/= b ) ) |
| 23 | 13 22 | mpd | |- ( ph -> E. a e. dom F E. b e. dom F a =/= b ) |
| 24 | hashge2el2difr | |- ( ( dom F e. _V /\ E. a e. dom F E. b e. dom F a =/= b ) -> 2 <_ ( # ` dom F ) ) |
|
| 25 | 8 23 24 | syl2anc | |- ( ph -> 2 <_ ( # ` dom F ) ) |