This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of Quine p. 49. (Contributed by NM, 22-Mar-2006) (Proof shortened by Andrew Salmon, 29-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prssg | |- ( ( A e. V /\ B e. W ) -> ( ( A e. C /\ B e. C ) <-> { A , B } C_ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssg | |- ( A e. V -> ( A e. C <-> { A } C_ C ) ) |
|
| 2 | snssg | |- ( B e. W -> ( B e. C <-> { B } C_ C ) ) |
|
| 3 | 1 2 | bi2anan9 | |- ( ( A e. V /\ B e. W ) -> ( ( A e. C /\ B e. C ) <-> ( { A } C_ C /\ { B } C_ C ) ) ) |
| 4 | unss | |- ( ( { A } C_ C /\ { B } C_ C ) <-> ( { A } u. { B } ) C_ C ) |
|
| 5 | df-pr | |- { A , B } = ( { A } u. { B } ) |
|
| 6 | 5 | sseq1i | |- ( { A , B } C_ C <-> ( { A } u. { B } ) C_ C ) |
| 7 | 4 6 | bitr4i | |- ( ( { A } C_ C /\ { B } C_ C ) <-> { A , B } C_ C ) |
| 8 | 3 7 | bitrdi | |- ( ( A e. V /\ B e. W ) -> ( ( A e. C /\ B e. C ) <-> { A , B } C_ C ) ) |