This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of an unordered pair of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmpropg | |- ( ( B e. V /\ D e. W ) -> dom { <. A , B >. , <. C , D >. } = { A , C } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmsnopg | |- ( B e. V -> dom { <. A , B >. } = { A } ) |
|
| 2 | dmsnopg | |- ( D e. W -> dom { <. C , D >. } = { C } ) |
|
| 3 | uneq12 | |- ( ( dom { <. A , B >. } = { A } /\ dom { <. C , D >. } = { C } ) -> ( dom { <. A , B >. } u. dom { <. C , D >. } ) = ( { A } u. { C } ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( B e. V /\ D e. W ) -> ( dom { <. A , B >. } u. dom { <. C , D >. } ) = ( { A } u. { C } ) ) |
| 5 | df-pr | |- { <. A , B >. , <. C , D >. } = ( { <. A , B >. } u. { <. C , D >. } ) |
|
| 6 | 5 | dmeqi | |- dom { <. A , B >. , <. C , D >. } = dom ( { <. A , B >. } u. { <. C , D >. } ) |
| 7 | dmun | |- dom ( { <. A , B >. } u. { <. C , D >. } ) = ( dom { <. A , B >. } u. dom { <. C , D >. } ) |
|
| 8 | 6 7 | eqtri | |- dom { <. A , B >. , <. C , D >. } = ( dom { <. A , B >. } u. dom { <. C , D >. } ) |
| 9 | df-pr | |- { A , C } = ( { A } u. { C } ) |
|
| 10 | 4 8 9 | 3eqtr4g | |- ( ( B e. V /\ D e. W ) -> dom { <. A , B >. , <. C , D >. } = { A , C } ) |