This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the size of a set is between 1 and 3 (inclusively), the set is a singleton or an unordered pair or an unordered triple. (Contributed by Alexander van der Vekens, 13-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hash1to3 | |- ( ( V e. Fin /\ 1 <_ ( # ` V ) /\ ( # ` V ) <_ 3 ) -> E. a E. b E. c ( V = { a } \/ V = { a , b } \/ V = { a , b , c } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashcl | |- ( V e. Fin -> ( # ` V ) e. NN0 ) |
|
| 2 | nn01to3 | |- ( ( ( # ` V ) e. NN0 /\ 1 <_ ( # ` V ) /\ ( # ` V ) <_ 3 ) -> ( ( # ` V ) = 1 \/ ( # ` V ) = 2 \/ ( # ` V ) = 3 ) ) |
|
| 3 | 1 2 | syl3an1 | |- ( ( V e. Fin /\ 1 <_ ( # ` V ) /\ ( # ` V ) <_ 3 ) -> ( ( # ` V ) = 1 \/ ( # ` V ) = 2 \/ ( # ` V ) = 3 ) ) |
| 4 | hash1snb | |- ( V e. Fin -> ( ( # ` V ) = 1 <-> E. a V = { a } ) ) |
|
| 5 | 4 | biimpa | |- ( ( V e. Fin /\ ( # ` V ) = 1 ) -> E. a V = { a } ) |
| 6 | 3mix1 | |- ( V = { a } -> ( V = { a } \/ V = { a , b } \/ V = { a , b , c } ) ) |
|
| 7 | 6 | 2eximi | |- ( E. b E. c V = { a } -> E. b E. c ( V = { a } \/ V = { a , b } \/ V = { a , b , c } ) ) |
| 8 | 7 | 19.23bi | |- ( E. c V = { a } -> E. b E. c ( V = { a } \/ V = { a , b } \/ V = { a , b , c } ) ) |
| 9 | 8 | 19.23bi | |- ( V = { a } -> E. b E. c ( V = { a } \/ V = { a , b } \/ V = { a , b , c } ) ) |
| 10 | 9 | eximi | |- ( E. a V = { a } -> E. a E. b E. c ( V = { a } \/ V = { a , b } \/ V = { a , b , c } ) ) |
| 11 | 5 10 | syl | |- ( ( V e. Fin /\ ( # ` V ) = 1 ) -> E. a E. b E. c ( V = { a } \/ V = { a , b } \/ V = { a , b , c } ) ) |
| 12 | 11 | expcom | |- ( ( # ` V ) = 1 -> ( V e. Fin -> E. a E. b E. c ( V = { a } \/ V = { a , b } \/ V = { a , b , c } ) ) ) |
| 13 | hash2pr | |- ( ( V e. Fin /\ ( # ` V ) = 2 ) -> E. a E. b V = { a , b } ) |
|
| 14 | 3mix2 | |- ( V = { a , b } -> ( V = { a } \/ V = { a , b } \/ V = { a , b , c } ) ) |
|
| 15 | 14 | eximi | |- ( E. c V = { a , b } -> E. c ( V = { a } \/ V = { a , b } \/ V = { a , b , c } ) ) |
| 16 | 15 | 19.23bi | |- ( V = { a , b } -> E. c ( V = { a } \/ V = { a , b } \/ V = { a , b , c } ) ) |
| 17 | 16 | 2eximi | |- ( E. a E. b V = { a , b } -> E. a E. b E. c ( V = { a } \/ V = { a , b } \/ V = { a , b , c } ) ) |
| 18 | 13 17 | syl | |- ( ( V e. Fin /\ ( # ` V ) = 2 ) -> E. a E. b E. c ( V = { a } \/ V = { a , b } \/ V = { a , b , c } ) ) |
| 19 | 18 | expcom | |- ( ( # ` V ) = 2 -> ( V e. Fin -> E. a E. b E. c ( V = { a } \/ V = { a , b } \/ V = { a , b , c } ) ) ) |
| 20 | hash3tr | |- ( ( V e. Fin /\ ( # ` V ) = 3 ) -> E. a E. b E. c V = { a , b , c } ) |
|
| 21 | 3mix3 | |- ( V = { a , b , c } -> ( V = { a } \/ V = { a , b } \/ V = { a , b , c } ) ) |
|
| 22 | 21 | eximi | |- ( E. c V = { a , b , c } -> E. c ( V = { a } \/ V = { a , b } \/ V = { a , b , c } ) ) |
| 23 | 22 | 2eximi | |- ( E. a E. b E. c V = { a , b , c } -> E. a E. b E. c ( V = { a } \/ V = { a , b } \/ V = { a , b , c } ) ) |
| 24 | 20 23 | syl | |- ( ( V e. Fin /\ ( # ` V ) = 3 ) -> E. a E. b E. c ( V = { a } \/ V = { a , b } \/ V = { a , b , c } ) ) |
| 25 | 24 | expcom | |- ( ( # ` V ) = 3 -> ( V e. Fin -> E. a E. b E. c ( V = { a } \/ V = { a , b } \/ V = { a , b , c } ) ) ) |
| 26 | 12 19 25 | 3jaoi | |- ( ( ( # ` V ) = 1 \/ ( # ` V ) = 2 \/ ( # ` V ) = 3 ) -> ( V e. Fin -> E. a E. b E. c ( V = { a } \/ V = { a , b } \/ V = { a , b , c } ) ) ) |
| 27 | 26 | com12 | |- ( V e. Fin -> ( ( ( # ` V ) = 1 \/ ( # ` V ) = 2 \/ ( # ` V ) = 3 ) -> E. a E. b E. c ( V = { a } \/ V = { a , b } \/ V = { a , b , c } ) ) ) |
| 28 | 27 | 3ad2ant1 | |- ( ( V e. Fin /\ 1 <_ ( # ` V ) /\ ( # ` V ) <_ 3 ) -> ( ( ( # ` V ) = 1 \/ ( # ` V ) = 2 \/ ( # ` V ) = 3 ) -> E. a E. b E. c ( V = { a } \/ V = { a , b } \/ V = { a , b , c } ) ) ) |
| 29 | 3 28 | mpd | |- ( ( V e. Fin /\ 1 <_ ( # ` V ) /\ ( # ` V ) <_ 3 ) -> E. a E. b E. c ( V = { a } \/ V = { a , b } \/ V = { a , b , c } ) ) |