This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set of size three is an unordered triple of three different elements. (Contributed by AV, 21-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hash3tpde | |- ( ( V e. W /\ ( # ` V ) = 3 ) -> E. a E. b E. c ( ( a =/= b /\ a =/= c /\ b =/= c ) /\ V = { a , b , c } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash3tr | |- ( ( V e. W /\ ( # ` V ) = 3 ) -> E. a E. b E. c V = { a , b , c } ) |
|
| 2 | ax-1 | |- ( ( a =/= b /\ a =/= c /\ b =/= c ) -> ( ( ( V e. W /\ ( # ` V ) = 3 ) /\ V = { a , b , c } ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
|
| 3 | 3ianor | |- ( -. ( a =/= b /\ a =/= c /\ b =/= c ) <-> ( -. a =/= b \/ -. a =/= c \/ -. b =/= c ) ) |
|
| 4 | nne | |- ( -. a =/= b <-> a = b ) |
|
| 5 | nne | |- ( -. a =/= c <-> a = c ) |
|
| 6 | nne | |- ( -. b =/= c <-> b = c ) |
|
| 7 | 4 5 6 | 3orbi123i | |- ( ( -. a =/= b \/ -. a =/= c \/ -. b =/= c ) <-> ( a = b \/ a = c \/ b = c ) ) |
| 8 | 3 7 | bitri | |- ( -. ( a =/= b /\ a =/= c /\ b =/= c ) <-> ( a = b \/ a = c \/ b = c ) ) |
| 9 | tpeq1 | |- ( a = b -> { a , b , c } = { b , b , c } ) |
|
| 10 | tpidm12 | |- { b , b , c } = { b , c } |
|
| 11 | 9 10 | eqtrdi | |- ( a = b -> { a , b , c } = { b , c } ) |
| 12 | 11 | eqeq2d | |- ( a = b -> ( V = { a , b , c } <-> V = { b , c } ) ) |
| 13 | fveqeq2 | |- ( V = { b , c } -> ( ( # ` V ) = 3 <-> ( # ` { b , c } ) = 3 ) ) |
|
| 14 | hashprlei | |- ( { b , c } e. Fin /\ ( # ` { b , c } ) <_ 2 ) |
|
| 15 | breq1 | |- ( ( # ` { b , c } ) = 3 -> ( ( # ` { b , c } ) <_ 2 <-> 3 <_ 2 ) ) |
|
| 16 | 2lt3 | |- 2 < 3 |
|
| 17 | 2re | |- 2 e. RR |
|
| 18 | 3re | |- 3 e. RR |
|
| 19 | 17 18 | ltnlei | |- ( 2 < 3 <-> -. 3 <_ 2 ) |
| 20 | 16 19 | mpbi | |- -. 3 <_ 2 |
| 21 | 20 | pm2.21i | |- ( 3 <_ 2 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) |
| 22 | 15 21 | biimtrdi | |- ( ( # ` { b , c } ) = 3 -> ( ( # ` { b , c } ) <_ 2 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
| 23 | 22 | com12 | |- ( ( # ` { b , c } ) <_ 2 -> ( ( # ` { b , c } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
| 24 | 23 | adantl | |- ( ( { b , c } e. Fin /\ ( # ` { b , c } ) <_ 2 ) -> ( ( # ` { b , c } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
| 25 | 14 24 | ax-mp | |- ( ( # ` { b , c } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) |
| 26 | 13 25 | biimtrdi | |- ( V = { b , c } -> ( ( # ` V ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
| 27 | 26 | adantld | |- ( V = { b , c } -> ( ( V e. W /\ ( # ` V ) = 3 ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
| 28 | 12 27 | biimtrdi | |- ( a = b -> ( V = { a , b , c } -> ( ( V e. W /\ ( # ` V ) = 3 ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) ) |
| 29 | tpeq1 | |- ( a = c -> { a , b , c } = { c , b , c } ) |
|
| 30 | tpidm13 | |- { c , b , c } = { c , b } |
|
| 31 | 29 30 | eqtrdi | |- ( a = c -> { a , b , c } = { c , b } ) |
| 32 | 31 | eqeq2d | |- ( a = c -> ( V = { a , b , c } <-> V = { c , b } ) ) |
| 33 | fveqeq2 | |- ( V = { c , b } -> ( ( # ` V ) = 3 <-> ( # ` { c , b } ) = 3 ) ) |
|
| 34 | hashprlei | |- ( { c , b } e. Fin /\ ( # ` { c , b } ) <_ 2 ) |
|
| 35 | breq1 | |- ( ( # ` { c , b } ) = 3 -> ( ( # ` { c , b } ) <_ 2 <-> 3 <_ 2 ) ) |
|
| 36 | 35 21 | biimtrdi | |- ( ( # ` { c , b } ) = 3 -> ( ( # ` { c , b } ) <_ 2 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
| 37 | 36 | com12 | |- ( ( # ` { c , b } ) <_ 2 -> ( ( # ` { c , b } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
| 38 | 37 | adantl | |- ( ( { c , b } e. Fin /\ ( # ` { c , b } ) <_ 2 ) -> ( ( # ` { c , b } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
| 39 | 34 38 | ax-mp | |- ( ( # ` { c , b } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) |
| 40 | 33 39 | biimtrdi | |- ( V = { c , b } -> ( ( # ` V ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
| 41 | 40 | adantld | |- ( V = { c , b } -> ( ( V e. W /\ ( # ` V ) = 3 ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
| 42 | 32 41 | biimtrdi | |- ( a = c -> ( V = { a , b , c } -> ( ( V e. W /\ ( # ` V ) = 3 ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) ) |
| 43 | tpeq2 | |- ( b = c -> { a , b , c } = { a , c , c } ) |
|
| 44 | tpidm23 | |- { a , c , c } = { a , c } |
|
| 45 | 43 44 | eqtrdi | |- ( b = c -> { a , b , c } = { a , c } ) |
| 46 | 45 | eqeq2d | |- ( b = c -> ( V = { a , b , c } <-> V = { a , c } ) ) |
| 47 | fveqeq2 | |- ( V = { a , c } -> ( ( # ` V ) = 3 <-> ( # ` { a , c } ) = 3 ) ) |
|
| 48 | hashprlei | |- ( { a , c } e. Fin /\ ( # ` { a , c } ) <_ 2 ) |
|
| 49 | breq1 | |- ( ( # ` { a , c } ) = 3 -> ( ( # ` { a , c } ) <_ 2 <-> 3 <_ 2 ) ) |
|
| 50 | 49 21 | biimtrdi | |- ( ( # ` { a , c } ) = 3 -> ( ( # ` { a , c } ) <_ 2 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
| 51 | 50 | com12 | |- ( ( # ` { a , c } ) <_ 2 -> ( ( # ` { a , c } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
| 52 | 51 | adantl | |- ( ( { a , c } e. Fin /\ ( # ` { a , c } ) <_ 2 ) -> ( ( # ` { a , c } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
| 53 | 48 52 | ax-mp | |- ( ( # ` { a , c } ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) |
| 54 | 47 53 | biimtrdi | |- ( V = { a , c } -> ( ( # ` V ) = 3 -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
| 55 | 54 | adantld | |- ( V = { a , c } -> ( ( V e. W /\ ( # ` V ) = 3 ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
| 56 | 46 55 | biimtrdi | |- ( b = c -> ( V = { a , b , c } -> ( ( V e. W /\ ( # ` V ) = 3 ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) ) |
| 57 | 28 42 56 | 3jaoi | |- ( ( a = b \/ a = c \/ b = c ) -> ( V = { a , b , c } -> ( ( V e. W /\ ( # ` V ) = 3 ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) ) |
| 58 | 57 | impcomd | |- ( ( a = b \/ a = c \/ b = c ) -> ( ( ( V e. W /\ ( # ` V ) = 3 ) /\ V = { a , b , c } ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
| 59 | 8 58 | sylbi | |- ( -. ( a =/= b /\ a =/= c /\ b =/= c ) -> ( ( ( V e. W /\ ( # ` V ) = 3 ) /\ V = { a , b , c } ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) ) |
| 60 | 2 59 | pm2.61i | |- ( ( ( V e. W /\ ( # ` V ) = 3 ) /\ V = { a , b , c } ) -> ( a =/= b /\ a =/= c /\ b =/= c ) ) |
| 61 | simpr | |- ( ( ( V e. W /\ ( # ` V ) = 3 ) /\ V = { a , b , c } ) -> V = { a , b , c } ) |
|
| 62 | 60 61 | jca | |- ( ( ( V e. W /\ ( # ` V ) = 3 ) /\ V = { a , b , c } ) -> ( ( a =/= b /\ a =/= c /\ b =/= c ) /\ V = { a , b , c } ) ) |
| 63 | 62 | ex | |- ( ( V e. W /\ ( # ` V ) = 3 ) -> ( V = { a , b , c } -> ( ( a =/= b /\ a =/= c /\ b =/= c ) /\ V = { a , b , c } ) ) ) |
| 64 | 63 | eximdv | |- ( ( V e. W /\ ( # ` V ) = 3 ) -> ( E. c V = { a , b , c } -> E. c ( ( a =/= b /\ a =/= c /\ b =/= c ) /\ V = { a , b , c } ) ) ) |
| 65 | 64 | 2eximdv | |- ( ( V e. W /\ ( # ` V ) = 3 ) -> ( E. a E. b E. c V = { a , b , c } -> E. a E. b E. c ( ( a =/= b /\ a =/= c /\ b =/= c ) /\ V = { a , b , c } ) ) ) |
| 66 | 1 65 | mpd | |- ( ( V e. W /\ ( # ` V ) = 3 ) -> E. a E. b E. c ( ( a =/= b /\ a =/= c /\ b =/= c ) /\ V = { a , b , c } ) ) |