This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set of size two is an unordered pair. (Contributed by Alexander van der Vekens, 8-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hash2pr | |- ( ( V e. W /\ ( # ` V ) = 2 ) -> E. a E. b V = { a , b } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn0 | |- 2 e. NN0 |
|
| 2 | hashvnfin | |- ( ( V e. W /\ 2 e. NN0 ) -> ( ( # ` V ) = 2 -> V e. Fin ) ) |
|
| 3 | 1 2 | mpan2 | |- ( V e. W -> ( ( # ` V ) = 2 -> V e. Fin ) ) |
| 4 | 3 | imp | |- ( ( V e. W /\ ( # ` V ) = 2 ) -> V e. Fin ) |
| 5 | hash2 | |- ( # ` 2o ) = 2 |
|
| 6 | 5 | eqcomi | |- 2 = ( # ` 2o ) |
| 7 | 6 | a1i | |- ( V e. Fin -> 2 = ( # ` 2o ) ) |
| 8 | 7 | eqeq2d | |- ( V e. Fin -> ( ( # ` V ) = 2 <-> ( # ` V ) = ( # ` 2o ) ) ) |
| 9 | 2onn | |- 2o e. _om |
|
| 10 | nnfi | |- ( 2o e. _om -> 2o e. Fin ) |
|
| 11 | 9 10 | ax-mp | |- 2o e. Fin |
| 12 | hashen | |- ( ( V e. Fin /\ 2o e. Fin ) -> ( ( # ` V ) = ( # ` 2o ) <-> V ~~ 2o ) ) |
|
| 13 | 11 12 | mpan2 | |- ( V e. Fin -> ( ( # ` V ) = ( # ` 2o ) <-> V ~~ 2o ) ) |
| 14 | 13 | biimpd | |- ( V e. Fin -> ( ( # ` V ) = ( # ` 2o ) -> V ~~ 2o ) ) |
| 15 | 8 14 | sylbid | |- ( V e. Fin -> ( ( # ` V ) = 2 -> V ~~ 2o ) ) |
| 16 | 15 | adantld | |- ( V e. Fin -> ( ( V e. W /\ ( # ` V ) = 2 ) -> V ~~ 2o ) ) |
| 17 | 4 16 | mpcom | |- ( ( V e. W /\ ( # ` V ) = 2 ) -> V ~~ 2o ) |
| 18 | en2 | |- ( V ~~ 2o -> E. a E. b V = { a , b } ) |
|
| 19 | 17 18 | syl | |- ( ( V e. W /\ ( # ` V ) = 2 ) -> E. a E. b V = { a , b } ) |