This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set of size three is an unordered triple. (Contributed by Alexander van der Vekens, 13-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hash3tr | |- ( ( V e. W /\ ( # ` V ) = 3 ) -> E. a E. b E. c V = { a , b , c } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn0 | |- 3 e. NN0 |
|
| 2 | hashvnfin | |- ( ( V e. W /\ 3 e. NN0 ) -> ( ( # ` V ) = 3 -> V e. Fin ) ) |
|
| 3 | 1 2 | mpan2 | |- ( V e. W -> ( ( # ` V ) = 3 -> V e. Fin ) ) |
| 4 | 3 | imp | |- ( ( V e. W /\ ( # ` V ) = 3 ) -> V e. Fin ) |
| 5 | hash3 | |- ( # ` 3o ) = 3 |
|
| 6 | 5 | eqcomi | |- 3 = ( # ` 3o ) |
| 7 | 6 | a1i | |- ( V e. Fin -> 3 = ( # ` 3o ) ) |
| 8 | 7 | eqeq2d | |- ( V e. Fin -> ( ( # ` V ) = 3 <-> ( # ` V ) = ( # ` 3o ) ) ) |
| 9 | 3onn | |- 3o e. _om |
|
| 10 | nnfi | |- ( 3o e. _om -> 3o e. Fin ) |
|
| 11 | 9 10 | ax-mp | |- 3o e. Fin |
| 12 | hashen | |- ( ( V e. Fin /\ 3o e. Fin ) -> ( ( # ` V ) = ( # ` 3o ) <-> V ~~ 3o ) ) |
|
| 13 | 11 12 | mpan2 | |- ( V e. Fin -> ( ( # ` V ) = ( # ` 3o ) <-> V ~~ 3o ) ) |
| 14 | 13 | biimpd | |- ( V e. Fin -> ( ( # ` V ) = ( # ` 3o ) -> V ~~ 3o ) ) |
| 15 | 8 14 | sylbid | |- ( V e. Fin -> ( ( # ` V ) = 3 -> V ~~ 3o ) ) |
| 16 | 15 | adantld | |- ( V e. Fin -> ( ( V e. W /\ ( # ` V ) = 3 ) -> V ~~ 3o ) ) |
| 17 | 4 16 | mpcom | |- ( ( V e. W /\ ( # ` V ) = 3 ) -> V ~~ 3o ) |
| 18 | en3 | |- ( V ~~ 3o -> E. a E. b E. c V = { a , b , c } ) |
|
| 19 | 17 18 | syl | |- ( ( V e. W /\ ( # ` V ) = 3 ) -> E. a E. b E. c V = { a , b , c } ) |