This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of a restricted class abstraction restricted to a singleton is a nonnegative integer. (Contributed by Alexander van der Vekens, 22-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashrabrsn | |- ( # ` { x e. { A } | ph } ) e. NN0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- { x e. { A } | ph } = { x e. { A } | ph } |
|
| 2 | rabrsn | |- ( { x e. { A } | ph } = { x e. { A } | ph } -> ( { x e. { A } | ph } = (/) \/ { x e. { A } | ph } = { A } ) ) |
|
| 3 | fveq2 | |- ( { x e. { A } | ph } = (/) -> ( # ` { x e. { A } | ph } ) = ( # ` (/) ) ) |
|
| 4 | hash0 | |- ( # ` (/) ) = 0 |
|
| 5 | 0nn0 | |- 0 e. NN0 |
|
| 6 | 4 5 | eqeltri | |- ( # ` (/) ) e. NN0 |
| 7 | 3 6 | eqeltrdi | |- ( { x e. { A } | ph } = (/) -> ( # ` { x e. { A } | ph } ) e. NN0 ) |
| 8 | fveq2 | |- ( { x e. { A } | ph } = { A } -> ( # ` { x e. { A } | ph } ) = ( # ` { A } ) ) |
|
| 9 | hashsng | |- ( A e. _V -> ( # ` { A } ) = 1 ) |
|
| 10 | 1nn0 | |- 1 e. NN0 |
|
| 11 | 9 10 | eqeltrdi | |- ( A e. _V -> ( # ` { A } ) e. NN0 ) |
| 12 | snprc | |- ( -. A e. _V <-> { A } = (/) ) |
|
| 13 | fveq2 | |- ( { A } = (/) -> ( # ` { A } ) = ( # ` (/) ) ) |
|
| 14 | 13 6 | eqeltrdi | |- ( { A } = (/) -> ( # ` { A } ) e. NN0 ) |
| 15 | 12 14 | sylbi | |- ( -. A e. _V -> ( # ` { A } ) e. NN0 ) |
| 16 | 11 15 | pm2.61i | |- ( # ` { A } ) e. NN0 |
| 17 | 8 16 | eqeltrdi | |- ( { x e. { A } | ph } = { A } -> ( # ` { x e. { A } | ph } ) e. NN0 ) |
| 18 | 7 17 | jaoi | |- ( ( { x e. { A } | ph } = (/) \/ { x e. { A } | ph } = { A } ) -> ( # ` { x e. { A } | ph } ) e. NN0 ) |
| 19 | 1 2 18 | mp2b | |- ( # ` { x e. { A } | ph } ) e. NN0 |