This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express the property of being a cardinal number. Definition 8 of Suppes p. 225. (Contributed by Mario Carneiro, 15-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iscard2 | |- ( ( card ` A ) = A <-> ( A e. On /\ A. x e. On ( A ~~ x -> A C_ x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardon | |- ( card ` A ) e. On |
|
| 2 | eleq1 | |- ( ( card ` A ) = A -> ( ( card ` A ) e. On <-> A e. On ) ) |
|
| 3 | 1 2 | mpbii | |- ( ( card ` A ) = A -> A e. On ) |
| 4 | eqss | |- ( ( card ` A ) = A <-> ( ( card ` A ) C_ A /\ A C_ ( card ` A ) ) ) |
|
| 5 | cardonle | |- ( A e. On -> ( card ` A ) C_ A ) |
|
| 6 | 5 | biantrurd | |- ( A e. On -> ( A C_ ( card ` A ) <-> ( ( card ` A ) C_ A /\ A C_ ( card ` A ) ) ) ) |
| 7 | 4 6 | bitr4id | |- ( A e. On -> ( ( card ` A ) = A <-> A C_ ( card ` A ) ) ) |
| 8 | oncardval | |- ( A e. On -> ( card ` A ) = |^| { y e. On | y ~~ A } ) |
|
| 9 | 8 | sseq2d | |- ( A e. On -> ( A C_ ( card ` A ) <-> A C_ |^| { y e. On | y ~~ A } ) ) |
| 10 | 7 9 | bitrd | |- ( A e. On -> ( ( card ` A ) = A <-> A C_ |^| { y e. On | y ~~ A } ) ) |
| 11 | ssint | |- ( A C_ |^| { y e. On | y ~~ A } <-> A. x e. { y e. On | y ~~ A } A C_ x ) |
|
| 12 | breq1 | |- ( y = x -> ( y ~~ A <-> x ~~ A ) ) |
|
| 13 | 12 | elrab | |- ( x e. { y e. On | y ~~ A } <-> ( x e. On /\ x ~~ A ) ) |
| 14 | ensymb | |- ( x ~~ A <-> A ~~ x ) |
|
| 15 | 14 | anbi2i | |- ( ( x e. On /\ x ~~ A ) <-> ( x e. On /\ A ~~ x ) ) |
| 16 | 13 15 | bitri | |- ( x e. { y e. On | y ~~ A } <-> ( x e. On /\ A ~~ x ) ) |
| 17 | 16 | imbi1i | |- ( ( x e. { y e. On | y ~~ A } -> A C_ x ) <-> ( ( x e. On /\ A ~~ x ) -> A C_ x ) ) |
| 18 | impexp | |- ( ( ( x e. On /\ A ~~ x ) -> A C_ x ) <-> ( x e. On -> ( A ~~ x -> A C_ x ) ) ) |
|
| 19 | 17 18 | bitri | |- ( ( x e. { y e. On | y ~~ A } -> A C_ x ) <-> ( x e. On -> ( A ~~ x -> A C_ x ) ) ) |
| 20 | 19 | ralbii2 | |- ( A. x e. { y e. On | y ~~ A } A C_ x <-> A. x e. On ( A ~~ x -> A C_ x ) ) |
| 21 | 11 20 | bitri | |- ( A C_ |^| { y e. On | y ~~ A } <-> A. x e. On ( A ~~ x -> A C_ x ) ) |
| 22 | 10 21 | bitrdi | |- ( A e. On -> ( ( card ` A ) = A <-> A. x e. On ( A ~~ x -> A C_ x ) ) ) |
| 23 | 3 22 | biadanii | |- ( ( card ` A ) = A <-> ( A e. On /\ A. x e. On ( A ~~ x -> A C_ x ) ) ) |