This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 5-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumsplit2.b | |- B = ( Base ` G ) |
|
| gsumsplit2.z | |- .0. = ( 0g ` G ) |
||
| gsumsplit2.p | |- .+ = ( +g ` G ) |
||
| gsumsplit2.g | |- ( ph -> G e. CMnd ) |
||
| gsumsplit2.a | |- ( ph -> A e. V ) |
||
| gsumsplit2.f | |- ( ( ph /\ k e. A ) -> X e. B ) |
||
| gsumsplit2.w | |- ( ph -> ( k e. A |-> X ) finSupp .0. ) |
||
| gsumsplit2.i | |- ( ph -> ( C i^i D ) = (/) ) |
||
| gsumsplit2.u | |- ( ph -> A = ( C u. D ) ) |
||
| Assertion | gsumsplit2 | |- ( ph -> ( G gsum ( k e. A |-> X ) ) = ( ( G gsum ( k e. C |-> X ) ) .+ ( G gsum ( k e. D |-> X ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsplit2.b | |- B = ( Base ` G ) |
|
| 2 | gsumsplit2.z | |- .0. = ( 0g ` G ) |
|
| 3 | gsumsplit2.p | |- .+ = ( +g ` G ) |
|
| 4 | gsumsplit2.g | |- ( ph -> G e. CMnd ) |
|
| 5 | gsumsplit2.a | |- ( ph -> A e. V ) |
|
| 6 | gsumsplit2.f | |- ( ( ph /\ k e. A ) -> X e. B ) |
|
| 7 | gsumsplit2.w | |- ( ph -> ( k e. A |-> X ) finSupp .0. ) |
|
| 8 | gsumsplit2.i | |- ( ph -> ( C i^i D ) = (/) ) |
|
| 9 | gsumsplit2.u | |- ( ph -> A = ( C u. D ) ) |
|
| 10 | 6 | fmpttd | |- ( ph -> ( k e. A |-> X ) : A --> B ) |
| 11 | 1 2 3 4 5 10 7 8 9 | gsumsplit | |- ( ph -> ( G gsum ( k e. A |-> X ) ) = ( ( G gsum ( ( k e. A |-> X ) |` C ) ) .+ ( G gsum ( ( k e. A |-> X ) |` D ) ) ) ) |
| 12 | ssun1 | |- C C_ ( C u. D ) |
|
| 13 | 12 9 | sseqtrrid | |- ( ph -> C C_ A ) |
| 14 | 13 | resmptd | |- ( ph -> ( ( k e. A |-> X ) |` C ) = ( k e. C |-> X ) ) |
| 15 | 14 | oveq2d | |- ( ph -> ( G gsum ( ( k e. A |-> X ) |` C ) ) = ( G gsum ( k e. C |-> X ) ) ) |
| 16 | ssun2 | |- D C_ ( C u. D ) |
|
| 17 | 16 9 | sseqtrrid | |- ( ph -> D C_ A ) |
| 18 | 17 | resmptd | |- ( ph -> ( ( k e. A |-> X ) |` D ) = ( k e. D |-> X ) ) |
| 19 | 18 | oveq2d | |- ( ph -> ( G gsum ( ( k e. A |-> X ) |` D ) ) = ( G gsum ( k e. D |-> X ) ) ) |
| 20 | 15 19 | oveq12d | |- ( ph -> ( ( G gsum ( ( k e. A |-> X ) |` C ) ) .+ ( G gsum ( ( k e. A |-> X ) |` D ) ) ) = ( ( G gsum ( k e. C |-> X ) ) .+ ( G gsum ( k e. D |-> X ) ) ) ) |
| 21 | 11 20 | eqtrd | |- ( ph -> ( G gsum ( k e. A |-> X ) ) = ( ( G gsum ( k e. C |-> X ) ) .+ ( G gsum ( k e. D |-> X ) ) ) ) |