This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Homomorphic property of composites with a singleton. (Contributed by AV, 20-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumccat.b | |- B = ( Base ` G ) |
|
| gsumccat.p | |- .+ = ( +g ` G ) |
||
| Assertion | gsumccatsn | |- ( ( G e. Mnd /\ W e. Word B /\ Z e. B ) -> ( G gsum ( W ++ <" Z "> ) ) = ( ( G gsum W ) .+ Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumccat.b | |- B = ( Base ` G ) |
|
| 2 | gsumccat.p | |- .+ = ( +g ` G ) |
|
| 3 | s1cl | |- ( Z e. B -> <" Z "> e. Word B ) |
|
| 4 | 1 2 | gsumccat | |- ( ( G e. Mnd /\ W e. Word B /\ <" Z "> e. Word B ) -> ( G gsum ( W ++ <" Z "> ) ) = ( ( G gsum W ) .+ ( G gsum <" Z "> ) ) ) |
| 5 | 3 4 | syl3an3 | |- ( ( G e. Mnd /\ W e. Word B /\ Z e. B ) -> ( G gsum ( W ++ <" Z "> ) ) = ( ( G gsum W ) .+ ( G gsum <" Z "> ) ) ) |
| 6 | 1 | gsumws1 | |- ( Z e. B -> ( G gsum <" Z "> ) = Z ) |
| 7 | 6 | 3ad2ant3 | |- ( ( G e. Mnd /\ W e. Word B /\ Z e. B ) -> ( G gsum <" Z "> ) = Z ) |
| 8 | 7 | oveq2d | |- ( ( G e. Mnd /\ W e. Word B /\ Z e. B ) -> ( ( G gsum W ) .+ ( G gsum <" Z "> ) ) = ( ( G gsum W ) .+ Z ) ) |
| 9 | 5 8 | eqtrd | |- ( ( G e. Mnd /\ W e. Word B /\ Z e. B ) -> ( G gsum ( W ++ <" Z "> ) ) = ( ( G gsum W ) .+ Z ) ) |